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Basic equations

Continuity equation and energy-momentum equation:

∂ν(nuν) = 0 , ∂νT
µν = 0.

In a perfect �uid, Tµν = (ε+ p)uµuν − gµνp.

From the condition ∂νT
µν = 0, the Euler equation and the

energy conservation equation can be deduced:

(ε+ p)∂νu
ν + uν∂νε = 0,

(ε+ p)uν∂νu
µ = (gµν − uµuν)∂νp.

EoS is ε = κp, where κ is not necessarily constant.
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A known solution

(Csörg®, Csernai, Hama, Kodama, Heavy.Ion.Phys. A21:73-84, 2004)

Ellipsoidal symmetry in space-time: s = x2

X 2(t)
+ y2

Y 2(t)
+ z2

Z2(t)

Hubble-type velocity �eld: uµ = xµ

τ τ =
√
xµxµ

The solution:

n = n0
(
τ0
τ

)3
ν(s)

T = T0

(
τ0
τ

)3/κ 1

ν(s)

p = nT

ν(s): arbitrary function of the s scale parameter (e.g. e−bs/2)

Solution is a non-accelerating one

In this solution κ is constant

Entropy density σ can be calculated as well
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Observables with κ =constant

Source function can be calculated from this solution

S(x , p)d4x = Nn(x)pµd3Σµ(x)H(τ)dτ exp

(
−pµu

µ

T

)
Calculated observables are �tted to data succesfully

Csanád, Vargyas, Eur. Phys. J. A 44, 473 (2010), arXiv:0909.4842
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More general EoS

Constant EoS may not be realistic (κ may depend on

temperature or pressure)

From lQCD trace anomaly (I = ε− 3p) can be calculated

Pressure is given by p(T )
T 4 =

∫ T

0
dT
T

I (T )
T 4

From I → κ(T ) = I (T )/p(T ) + 3, speed of sound: κ = 1
c2
s

Borsányi, Fodor, Katz et al., JHEP 1011, 077 (2010), arXiv:1007.2580a
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Temperature dependent EoS with conserved charge

If there is a conserved charge (n), the energy equation yields

T∂νu
ν +

d

dT
(Tκ(T )) uν∂νT = 0.

It works only if d (Tκ(T )) /dT = 0

Solution cannot be applied if 173 MeV < T < 225 MeV

This problem is absent, if there is no conserved charge
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Temperature dependent EoS without conserved charge

If there is no conserved charge, we have

ε = Ts − p → dε = Tds. (1)

(because of Gibbs�Duhem relation: dp = sdT )

Put (1) and ε+ p = Ts to the energy equation:

Tσ∂νu
ν + uνT∂νσ → ∂ν(σuν) = 0

This is a continuity equation to entropy-density.

Put ε+ p = Ts and ε = κ(T )p to the energy equation

T∂νu
ν +

(
κ+

T

κ+ 1

dκ(T )

dT

)
uν∂νT = 0

It's not the same equation (only if κ=const.)
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New solution with more general EoS

Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

If there is a conserved charge

n = n0
τ30
τ3
,

uν =
xν

τ
,

τ30
τ3

= exp

[∫ T

T0

dκ(ζ)ζ

dζ

1

ζ
dζ

]

Arbitrary κ(T ) function may be used

If dκ(T )T/dT < 0→ ∂νu
ν < 0! It's not realistic!
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xν
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Pressure dependent κ without conserved charge

Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

If EoS is given as a function of pressure: ε = κ(p)p

The energy equation can written with this EoS as

∂ν(εuν) + p∂νu
ν = 0

From this equation(
ε

p
+ 1

)
∂ν ln

(
V0

V

)
=
∂νε

p

With an integral trasformation it can be �solved� by

V0

V
= exp

[∫ p

p0

(
κ (ζ)

ζ
+

dκ

dζ

)
dζ

κ (ζ) + 1

]
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A new solution if κ = κ(p)
Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

This new solution can be written as

σ = σ0
τ30
τ3
,

uν =
xν

τ
,

τ30
τ3

= exp

[∫ p

p0

(
κ (ζ)

ζ
+

dκ

dζ

)
dζ

κ (ζ) + 1

]

It can be used if a parametrization to ε(p) is given

If p = p(T ), we get the previous solution
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Investigation without conserved charge

Let assume lQCD EoS

T(τ) can be calculated

V0

V
= exp

[∫ T

T0

(
κ(ζ)

ζ
+

1

κ+ 1

dκ(ζ)

dζ
dζ

)]
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Summary

Constant EoS is succesful in description of data

According to lQCD calculation, EoS is not constant

Found new solutions with temperature, pressure dependent

EoS

T (τ) can be calculated → lQCD EoS applicable

If assuming τf /τinit , Tf /Tinit can be calculated
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Thank you for your attention!
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