Analytic solutions of relativistic hydrodynamics for a lattice QCD inspired equation of state

Máté Csanád, Márton Nagy, Sándor Lökös

Zimányi Winter School
Budapest, December 4, 2012

Outline

(1) Hydrodynamics in relativistic heavy ion collisions

- Basic equations and Equation of State
- An already known solution
- Observables with $\kappa=$ const.

Outline

(1) Hydrodynamics in relativistic heavy ion collisions

- Basic equations and Equation of State
- An already known solution
- Observables with $\kappa=$ const.
(2) New solution for more general EoS
- Temperature dependent EoS with conserved charge
- Temperature dependent EoS without conserved charge
- Pressure dependent EoS without conserved charge

Outline

(1) Hydrodynamics in relativistic heavy ion collisions

- Basic equations and Equation of State
- An already known solution
- Observables with $\kappa=$ const.
(2) New solution for more general EoS
- Temperature dependent EoS with conserved charge
- Temperature dependent EoS without conserved charge
- Pressure dependent EoS without conserved charge
(3) Investigation with lattice QCD parametrization
- Temperature dependence from the new solution
- Connection between initial and final state

Basic equations

- Continuity equation and energy-momentum equation:

$$
\partial_{\nu}\left(n u^{\nu}\right)=0, \quad \partial_{\nu} T^{\mu \nu}=0
$$

- In a perfect fluid, $T^{\mu \nu}=(\epsilon+p) u^{\mu} u^{\nu}-g^{\mu \nu} p$.
- From the condition $\partial_{\nu} T^{\mu \nu}=0$, the Euler equation and the energy conservation equation can be deduced:

$$
\begin{aligned}
(\epsilon+p) \partial_{\nu} u^{\nu}+u^{\nu} \partial_{\nu} \epsilon & =0 \\
(\epsilon+p) u^{\nu} \partial_{\nu} u^{\mu} & =\left(g^{\mu \nu}-u^{\mu} u^{\nu}\right) \partial_{\nu} p .
\end{aligned}
$$

- EoS is $\epsilon=\kappa p$, where κ is not necessarily constant.

A known solution

(Csörgő, Csernai, Hama, Kodama, Heavy.lon.Phys. A21:73-84, 2004)

- Ellipsoidal symmetry in space-time: $s=\frac{x^{2}}{X^{2}(t)}+\frac{y^{2}}{Y^{2}(t)}+\frac{z^{2}}{Z^{2}(t)}$

A known solution

(Csörgő, Csernai, Hama, Kodama, Heavy.lon.Phys. A21:73-84, 2004)

- Ellipsoidal symmetry in space-time: $s=\frac{x^{2}}{X^{2}(t)}+\frac{y^{2}}{Y^{2}(t)}+\frac{z^{2}}{Z^{2}(t)}$
- Hubble-type velocity field: $u^{\mu}=\frac{x^{\mu}}{\tau} \tau=\sqrt{x_{\mu} X^{\mu}}$

A known solution

(Csörgő, Csernai, Hama, Kodama, Heavy.lon.Phys. A21:73-84, 2004)

- Ellipsoidal symmetry in space-time: $s=\frac{x^{2}}{X^{2}(t)}+\frac{y^{2}}{Y^{2}(t)}+\frac{z^{2}}{Z^{2}(t)}$
- Hubble-type velocity field: $u^{\mu}=\frac{x^{\mu}}{\tau} \tau=\sqrt{x_{\mu} x^{\mu}}$
- The solution:
- $n=n_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3} \nu(s)$
- $T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3 / \kappa} \frac{1}{\nu(s)}$
- $p=n T$
- $\nu(s)$: arbitrary function of the s scale parameter (e.g. $e^{-b s / 2}$)

A known solution

(Csörgő, Csernai, Hama, Kodama, Heavy.lon.Phys. A21:73-84, 2004)

- Ellipsoidal symmetry in space-time: $s=\frac{x^{2}}{X^{2}(t)}+\frac{y^{2}}{Y^{2}(t)}+\frac{z^{2}}{Z^{2}(t)}$
- Hubble-type velocity field: $u^{\mu}=\frac{x^{\mu}}{\tau} \tau=\sqrt{x_{\mu} x^{\mu}}$
- The solution:
- $n=n_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3} \nu(s)$
- $T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3 / \kappa} \frac{1}{\nu(s)}$
- $p=n T$
- $\nu(s)$: arbitrary function of the s scale parameter (e.g. $e^{-b s / 2}$)
- Solution is a non-accelerating one

A known solution

(Csörgő, Csernai, Hama, Kodama, Heavy.lon.Phys. A21:73-84, 2004)

- Ellipsoidal symmetry in space-time: $s=\frac{x^{2}}{X^{2}(t)}+\frac{y^{2}}{Y^{2}(t)}+\frac{z^{2}}{Z^{2}(t)}$
- Hubble-type velocity field: $u^{\mu}=\frac{x^{\mu}}{\tau} \tau=\sqrt{x_{\mu} x^{\mu}}$
- The solution:
- $n=n_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3} \nu(s)$
- $T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3 / \kappa} \frac{1}{\nu(s)}$
- $p=n T$
- $\nu(s)$: arbitrary function of the s scale parameter (e.g. $e^{-b s / 2}$)
- Solution is a non-accelerating one
- In this solution κ is constant

A known solution

(Csörgő, Csernai, Hama, Kodama, Heavy.lon.Phys. A21:73-84, 2004)

- Ellipsoidal symmetry in space-time: $s=\frac{x^{2}}{X^{2}(t)}+\frac{y^{2}}{Y^{2}(t)}+\frac{z^{2}}{Z^{2}(t)}$
- Hubble-type velocity field: $u^{\mu}=\frac{x^{\mu}}{\tau} \tau=\sqrt{x_{\mu} x^{\mu}}$
- The solution:
- $n=n_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3} \nu(s)$
- $T=T_{0}\left(\frac{\tau_{0}}{\tau}\right)^{3 / \kappa} \frac{1}{\nu(s)}$
- $p=n T$
- $\nu(s)$: arbitrary function of the s scale parameter (e.g. $e^{-b s / 2}$)
- Solution is a non-accelerating one
- In this solution κ is constant
- Entropy density σ can be calculated as well

Observables with $\kappa=$ constant

- Source function can be calculated from this solution

$$
S(x, p) d^{4} x=\mathcal{N} n(x) p^{\mu} d^{3} \Sigma_{\mu}(x) H(\tau) d \tau \exp \left(-\frac{p_{\mu} u^{\mu}}{T}\right)
$$

- Calculated observables are fitted to data succesfully Csanád, Vargyas, Eur. Phys. J. A 44, 473 (2010), arXiv:0909.4842

More general EoS

- Constant EoS may not be realistic (κ may depend on temperature or pressure)

Borsányi, Fodor, Katz et al., JHEP 1011, 077 (2010), arXiv:1007.2580a

More general EoS

- Constant EoS may not be realistic (κ may depend on temperature or pressure)
- From IQCD trace anomaly ($I=\epsilon-3 p$) can be calculated Pressure is given by $\frac{p(T)}{T^{4}}=\int_{0}^{T} \frac{d T}{T} \frac{l(T)}{T^{4}}$

Borsányi, Fodor, Katz et al., JHEP 1011, 077 (2010), arXiv:1007.2580a

More general EoS

- Constant EoS may not be realistic (κ may depend on temperature or pressure)
- From IQCD trace anomaly ($I=\epsilon-3 p$) can be calculated Pressure is given by $\frac{p(T)}{T^{4}}=\int_{0}^{T} \frac{d T}{T} \frac{l(T)}{T^{4}}$
- From $I \rightarrow \kappa(T)=I(T) / p(T)+3$, speed of sound: $\kappa=\frac{1}{c_{s}^{2}}$

Borsányi, Fodor, Katz et al., JHEP 1011, 077 (2010), arXiv:1007.2580a

Temperature dependent EoS with conserved charge

- If there is a conserved charge (n), the energy equation yields

$$
T \partial_{\nu} u^{\nu}+\frac{\mathrm{d}}{\mathrm{~d} T}(T \kappa(T)) u^{\nu} \partial_{\nu} T=0 .
$$

Temperature dependent EoS with conserved charge

- If there is a conserved charge (n), the energy equation yields

$$
T \partial_{\nu} u^{\nu}+\frac{\mathrm{d}}{\mathrm{~d} T}(T \kappa(T)) u^{\nu} \partial_{\nu} T=0
$$

- It works only if $d(T \kappa(T)) / d T \geqq 0$

Temperature dependent EoS with conserved charge

- If there is a conserved charge (n), the energy equation yields

$$
T \partial_{\nu} u^{\nu}+\frac{\mathrm{d}}{\mathrm{~d} T}(T \kappa(T)) u^{\nu} \partial_{\nu} T=0 .
$$

- It works only if $d(T \kappa(T)) / d T \geqq 0$

- Solution cannot be applied if $173 \mathrm{MeV}<T<225 \mathrm{MeV}$
- This problem is absent, if there is no conserved charge

Temperature dependent EoS without conserved charge

- If there is no conserved charge, we have

$$
\begin{equation*}
\epsilon=T s-p \rightarrow d \epsilon=T d s . \tag{1}
\end{equation*}
$$

(because of Gibbs-Duhem relation: $d p=s d T$)

Temperature dependent EoS without conserved charge

- If there is no conserved charge, we have

$$
\begin{equation*}
\epsilon=T s-p \rightarrow d \epsilon=T d s . \tag{1}
\end{equation*}
$$

(because of Gibbs-Duhem relation: $d p=s d T$)

- Put (1) and $\epsilon+p=T s$ to the energy equation:

$$
T \sigma \partial_{\nu} u^{\nu}+u^{\nu} T \partial_{\nu} \sigma \rightarrow \partial_{\nu}\left(\sigma u^{\nu}\right)=0
$$

This is a continuity equation to entropy-density.

Temperature dependent EoS without conserved charge

- If there is no conserved charge, we have

$$
\begin{equation*}
\epsilon=T s-p \rightarrow d \epsilon=T d s . \tag{1}
\end{equation*}
$$

(because of Gibbs-Duhem relation: $d p=s d T$)

- Put (1) and $\epsilon+p=T s$ to the energy equation:

$$
T \sigma \partial_{\nu} u^{\nu}+u^{\nu} T \partial_{\nu} \sigma \rightarrow \partial_{\nu}\left(\sigma u^{\nu}\right)=0
$$

This is a continuity equation to entropy-density.

- Put $\epsilon+p=T s$ and $\epsilon=\kappa(T) p$ to the energy equation

$$
T \partial_{\nu} u^{\nu}+\left(\kappa+\frac{T}{\kappa+1} \frac{d \kappa(T)}{d T}\right) u^{\nu} \partial_{\nu} T=0
$$

Temperature dependent EoS without conserved charge

- If there is no conserved charge, we have

$$
\begin{equation*}
\epsilon=T s-p \rightarrow d \epsilon=T d s \tag{1}
\end{equation*}
$$

(because of Gibbs-Duhem relation: $d p=s d T$)

- Put (1) and $\epsilon+p=T s$ to the energy equation:

$$
T \sigma \partial_{\nu} u^{\nu}+u^{\nu} T \partial_{\nu} \sigma \rightarrow \partial_{\nu}\left(\sigma u^{\nu}\right)=0
$$

This is a continuity equation to entropy-density.

- Put $\epsilon+p=T s$ and $\epsilon=\kappa(T) p$ to the energy equation

$$
T \partial_{\nu} u^{\nu}+\left(\kappa+\frac{T}{\kappa+1} \frac{d \kappa(T)}{d T}\right) u^{\nu} \partial_{\nu} T=0
$$

- It's not the same equation (only if $\kappa=$ const.)

New solution with more general EoS

Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

If there is a conserved charge

$$
\begin{aligned}
n & =n_{0} \frac{\tau_{0}^{3}}{\tau^{3}} \\
u^{\nu} & =\frac{x^{\nu}}{\tau} \\
\frac{\tau_{0}^{3}}{\tau^{3}} & =\exp \left[\int_{T_{0}}^{T} \frac{d \kappa(\zeta) \zeta}{d \zeta} \frac{1}{\zeta} d \zeta\right]
\end{aligned}
$$

New solution with more general EoS

Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

If there is a conserved charge

$$
\begin{aligned}
n & =n_{0} \frac{\tau_{0}^{3}}{\tau^{3}} \\
u^{\nu} & =\frac{x^{\nu}}{\tau} \\
\frac{\tau_{0}^{3}}{\tau^{3}} & =\exp \left[\int_{T_{0}}^{\tau} \frac{d \kappa(\zeta) \zeta}{d \zeta} \frac{1}{\zeta} d \zeta\right]
\end{aligned}
$$

- Arbitrary $\kappa(T)$ function may be used
- If $d \kappa(T) T / d T<0 \rightarrow \partial_{\nu} u^{\nu}<0$! It's not realistic!

New solution with more general EoS

Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

If there is no conserved charge

$$
\begin{aligned}
\sigma & =\sigma_{0} \frac{\tau_{0}^{3}}{\tau^{3}} \\
u^{\nu} & =\frac{x^{\nu}}{\tau} \\
\frac{\tau_{0}^{3}}{\tau^{3}} & =\exp \left[\int_{T_{0}}^{T}\left(\frac{\kappa(\zeta)}{\zeta}+\frac{1}{\kappa+1} \frac{d \kappa(\zeta)}{d \zeta} d \zeta\right)\right]
\end{aligned}
$$

- It can be used if κ is given as a function of temperature

Pressure dependent κ without conserved charge
Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

- If EoS is given as a function of pressure: $\epsilon=\kappa(p) p$

Pressure dependent κ without conserved charge

Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

- If EoS is given as a function of pressure: $\epsilon=\kappa(p) p$
- The energy equation can written with this EoS as

$$
\partial_{\nu}\left(\epsilon u^{\nu}\right)+p \partial_{\nu} u^{\nu}=0
$$

Pressure dependent κ without conserved charge

Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

- If EoS is given as a function of pressure: $\epsilon=\kappa(p) p$
- The energy equation can written with this EoS as

$$
\partial_{\nu}\left(\epsilon u^{\nu}\right)+p \partial_{\nu} u^{\nu}=0
$$

- From this equation

$$
\left(\frac{\epsilon}{p}+1\right) \partial_{\nu} \ln \left(\frac{V_{0}}{V}\right)=\frac{\partial_{\nu} \epsilon}{p}
$$

Pressure dependent κ without conserved charge

Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

- If EoS is given as a function of pressure: $\epsilon=\kappa(p) p$
- The energy equation can written with this EoS as

$$
\partial_{\nu}\left(\epsilon u^{\nu}\right)+p \partial_{\nu} u^{\nu}=0
$$

- From this equation

$$
\left(\frac{\epsilon}{p}+1\right) \partial_{\nu} \ln \left(\frac{V_{0}}{V}\right)=\frac{\partial_{\nu} \epsilon}{p}
$$

- With an integral trasformation it can be "solved" by

$$
\frac{V_{0}}{V}=\exp \left[\int_{p_{0}}^{p}\left(\frac{\kappa(\zeta)}{\zeta}+\frac{\mathrm{d} \kappa}{\mathrm{~d} \zeta}\right) \frac{\mathrm{d} \zeta}{\kappa(\zeta)+1}\right]
$$

A new solution if $\kappa=\kappa(p)$

Csanád, Nagy, Lökös, Eur. Phys. J. A (2012) 48: 173

This new solution can be written as

$$
\begin{aligned}
\sigma & =\sigma_{0} \frac{\tau_{0}^{3}}{\tau^{3}} \\
u^{\nu} & =\frac{x^{\nu}}{\tau} \\
\frac{\tau_{0}^{3}}{\tau^{3}} & =\exp \left[\int_{p_{0}}^{p}\left(\frac{\kappa(\zeta)}{\zeta}+\frac{\mathrm{d} \kappa}{\mathrm{~d} \zeta}\right) \frac{\mathrm{d} \zeta}{\kappa(\zeta)+1}\right]
\end{aligned}
$$

- It can be used if a parametrization to $\epsilon(p)$ is given
- If $p=p(T)$, we get the previous solution

Investigation without conserved charge

- Let assume IQCD EoS
- $\mathrm{T}(\tau)$ can be calculated

$$
\frac{V_{0}}{V}=\exp \left[\int_{T_{0}}^{T}\left(\frac{\kappa(\zeta)}{\zeta}+\frac{1}{\kappa+1} \frac{d \kappa(\zeta)}{d \zeta} d \zeta\right)\right]
$$

Summary

- Constant EoS is succesful in description of data

Summary

- Constant EoS is succesful in description of data
- According to IQCD calculation, EoS is not constant

Summary

- Constant EoS is succesful in description of data
- According to IQCD calculation, EoS is not constant
- Found new solutions with temperature, pressure dependent EoS

Summary

- Constant EoS is succesful in description of data
- According to IQCD calculation, EoS is not constant
- Found new solutions with temperature, pressure dependent EoS
- $T(\tau)$ can be calculated \rightarrow IQCD EoS applicable

Summary

- Constant EoS is succesful in description of data
- According to IQCD calculation, EoS is not constant
- Found new solutions with temperature, pressure dependent EoS
- $T(\tau)$ can be calculated \rightarrow IQCD EoS applicable
- If assuming $\tau_{f} / \tau_{i n i t}, T_{f} / T_{\text {init }}$ can be calculated

Thank you for your attention!

