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Hadron Spectra in Heavy-ion  Collisions

Phys. Lett. B, 689, 14-17 (2010) J. Phys. G: Nucl. Part. Phys. 37 085104 (2010)

Theoretical model: Recombination of Tsallis distributed thermal quarks
                                 + „Blast Wave” flow profile for the expanding QGP
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Hadron Spectra in Proton-proton Collisions

Phys. Rev. D, 83, 052004 (2011)
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Hadron Spectra in Electron-positron Collisions

● C. Beck, Physica A, 286, 164-180 (2000)
● I. Bediaga, et.al., Physica A, 286, 156-163 (2000) 
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Transverse momentum distribution 
of charged hadrons in jets

Energy-fraction distribution of 
charged hadrons

d
dx
∝ 1 q−1

T /s /2
x 
−1/q−1

● Urmossy et.al., Phys.Lett.B, 701, 111-116
 (2011), arXiv:1101.3023

x < 0.2
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Multiplicity distributions in
electron-positron collisions

Multiplicity Fluctuations

Urmossy et.al., Phys. Lett. B, 701: 111-116 (2011),
arXiv:1101.3023

Multiplicity distributions in
AuAu collisions @200 AGeV

PHENIX Collab., arXiv:0805.1521v1
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Jet-fragmentation in e +e - and pp Collisions
● A jet is a bunch of hadrons flying almost colinearly (quasi – 1 dimension!).
 If the cross-section of the production of these hadrons is proportional to their
phasespace  restricted only by energy conservation, these hadrons form a
microcanonical ensemble.
 Thisway, in a jet of N (massless) hadrons, hadrons have the energy distribution:

● The number of hadrons in a jet fluctuates as (experimental observation)

f N z =AN 1−z N−2 , z=
h
E jet

● Thus, the multiplicity averaged hadron distribution (fragmentation function)
 becomes

p N  ∝ N−N 0
−1e−N−N 0

d
d z
=∑

N=N 0

∞

f N z N p N  ∝
1−z N 0

1−q−1
T /E jet

ln 1−z
1/q−1

or negative-binomial
distribution
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e +e - annihilations
@LEP (√s = 14–200 GeV)

Urmossy et. al.,
Phys. Lett. B, 701, 111-116 (2011),
arXiv:1101.3023

proton-proton collisions
@LHC (pT = 25–500 GeV/c)

Urmossy et. al.,
arXiv:1204.1508v1

Confrontation with Measurements2)



  
Urmossy et. al., Phys. Lett. B, 701, 111-116 (2011), arXiv:1101.3023

Scale-evollution of the Parameters

e +e - annihilations @LEP (√s = 14–200 GeV)

d
d z

∝ 1−z  1−q−1
T /E jet

ln 1−z 
−1/q−1

q rises, T/√s falls as the collision energy (√s) grows
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Urmossy et. al., arXiv:1204.1508v1

Similar Scale-depencence in

proton-proton collisions  @LHC (pT = 25–500 GeV/c)

T* = T / pT jet
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π + spectrum in pp --> π +X
@ √s=7 TeV (NLO pQCD)

Barnaföldi et. al., Proceedings of the Workshop Gribov '80 (2010)

Scale dependence of q and T

D pi




z ~1qi−1 z /T i
−1/qi−1

qi=q0iq1i ln ln Q
2


T i=T 0iT 1i ln  ln Q
2


AKK vs. Tsallis
as Frag. Func.

Why do we see such scale depencence?
                                                     (Gergely Kalmár's Talk today)
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Transverse Spectra of π, K, p  in pp Collisions
                                                                   (Ferenc Siklér's Talk on wednesday)

 From experiments we know only the averages:

p N  ∝ N a−1e−aN /N 0 = ∫dET∫d
3 p f ET , N



Euler-gamma / negative-binomial distribution

3)

● Multiplicity distributions of charged particles:

● Multiplicity averaged hadron spectra:

f  ∝ [1 q−1/ T ]
−1/ q−1

= ∑
N
∫dET f ET , N



● Hadron spectra measured at fix multiplicity N (pT < 2 GeV/c new CMS data):

f N  ∝ [1q−1/T ]
−1/q−1

= ∫dET f ET , N


 Hadron distribution in a single event of multiplicity N and total transverse energy
ET = ΣmT

f ET , N
 , =m2

pT
2
−m



  

Multiplicity Dependence of π, K, p Spectra in pp@7 TeV3)

q = 1 log log N /N q , T = T 01N /N T 

mailto:pp@7


  

Transverse Spectra of π, K, p  in pp Collisions

 p(N,ET) containes all the information on N and ET fluctuations. Let us choose

3)

p N , ET  = h N  gN ET 

 Let us suppose that

f ET , N
 = p N , ET  A exp{−} , =3N /ET

with independent multiplicity fluctuations

hN  ~ N a−1e−aN /N 0

but multiplicity dependent energy distribution

gN ET  ~ ET
−2e−E0 /ET

… and we will recover the measured marginal distributions:

p N  , f N  , f 



  

Predictions of the Model3)

N and ET are correlated! Their joint distribution:

p N , ET  ~ ET
−2e−E0 /ET × N a−1e−aN /N 0

 = [ ln ln N /N q]
−1
−4, E0 =

3NT 01N /NT 

1−4 ln ln N /N q

with



  

Multiplicity fluctuations hide event-by-event physics
from our eyes.

We should measure the spectra in each multiplicity bin.

Take Home Message:



  

Back-up Slides........................



  

Generalise the free-energy functional in the Maximum Entropy variational ansatz

How to Obtain the Tsallis Distribution (a)

S [ f  ]−∫ f  = max

Deform the entropy, S[f] (F. Caruso and C. Tsallis., Phys Rev E 78, 021101 (2008);
C. Tsallis, Eur. Phys. J. A, 40, 257-266 (2009))

In a linear spin-chain, because of entenglement, the entropy of N adjacent spins
becomes proportional to N (in the limit of N-->∞) if a new entropy functional
is introduced:

SBG=−∫ f ln f  STS=−∫ f lnq f

lnq f=
f 1−q
−1

q−1

The sollution of the variational problem is the Tsallis distribution:

f =A 1q−1/T 
−1/q−1



  

How to Obtain the Tsallis Distribution (b)

−∫ f ln f−∫ L[ f ] = max

Introduce special N-body interactions of the type
    E = E1 + E2 + … a (E1 E2 + E1 E3 + …) + … + aN-1 E1 * … * EN

which is equivalent to 
    L(E) = L(E1) + L(E2) + … + L(EN)    with     L(E) = (1/a) ln(1 + a E)  

Now the variational problem becomes 

● K. Urmossy et. al., EPJ Web of Conferences, 13, 05003 (2011)
● T. S. Biro et. al., J. Phys. G, 36 064044 (2009)
● T. S. Biro et. al., Eur. Phys. J. A 40 325-340 (2009)

with the Tsallis distribution as the sollution:

f =A 1q−1/T 
−1/q−1

,



  

The sum of the energies E1 and E2 of 2 non-interacting sub-systems is the
total energy E of the whole system

What is T?   Equilibration of 2 Systems

S E=S1E1S2E2 = max

E=E1E2 = fix

E = E1E2

In equilibrium the total energy is fixed, while the total entropy is maximal:

∂S1E1

∂E1

=
1
T
=
∂S2E2

∂E2

Separating the variables, both sides are equal to the inverse temperature:



  

Suppose, that because of special interactions, the energy of 2 sub-systems,
E1 and E2 and the total energy E are related as

What is T?   Equilibration of 2 Systems

S E=S1E1S2E2 = max

LE=LE1LE2 = fix

LE=LE1L E2 , LE=
1
a

ln 1aE

In equilibrium the total energy is fixed, while the total entropy is maximal:

∂S1E1

∂ LE1
=

1
T
=
∂S2E2

∂ LE2

T.S. Biró, P. Ván, Physical Review E, 83, 061187 (2011)
 

Separating the variables, both sides are equal to the inverse temperature:



  

Entropy and Energy Functionals with the Corresponding 
Equilibrium Distributions

lnq z=
z1−q
−1

q−1

Deformed logarithm (C. Tsallis, Eur. Phys. J. A, 40, 257-266 (2009) ):

S [ f  ]−C [ f  ] = max

T.S. Biró et. al.,
Phys. Rev. E, 83, 061187, (2011)

C. Tsallis

T. S. Biro et. al., 
Eur. Phys. J. A 40 325-340 (2009)



  

How to Obtain the Tsallis Distribution (c)

f =A exp−

SuperStatistics:

If the hadron distribution is Boltzmann-Gibbs,

the average distribution becomes the Tsallis distribution:

dN

d3 p
=∫ d  p  f  ∝ 1〈〉 

−D1

but the temperature fluctuates event-by-event or position-to-position as

p  ∝ −1 exp −/〈〉



  

How to Obtain the Tsallis Distribution (c)

f =A exp− , E /n = DT

Or similarly,

If the hadron distribution is Boltzmann-Gibbs,

the average distribution becomes the Tsallis distribution:

dN

d3 p
=∫ dn p n f n ∝ 1D 〈n〉

 E

−D1

but the multiplicity fluctuates event-by-event while E = constant

p n ∝ n−1 exp −n / 〈n〉



  

How to Obtain the Tsallis Distribution (c)

f =A exp− , E /n = DT

Moreover,

If the hadron distribution is Boltzmann-Gibbs,

the average distribution becomes the Tsallis distribution:

dN

d3 p
=∫ dE p E f E  ∝ 1 Dn

〈E 〉

−D1

but the total transverse energy fluctuates event-by-event while n = fix

p E  ∝ E−−2 exp− 〈E 〉 /E



  

Now What Is the T Parameter?

E
N
=
∫ f TS 
∫ f TS

=
DT

1−q−1D1

Alas, from measurements, we do not see the interactions and
internal fluctuations inside the quark-matter, however, we measure
the  mean energy per particle (for є(p) = p disp. rel.):

Thus, the fitted Tsallis T is much smaller then the fitted Boltzmann T!



  

Fluctuations of the total transverse energy can 
describe pp data

If the distribution of the total transverse energy is

where the mean energy and the width of the distribution varies with n as

p E  ∝ E−−2 exp− 〈E 〉 /E

 =
1

 ln ln N /N q
−D1

〈E 〉 =
DT 01N /NT 

1−D1 ln ln N /N q

This prediction could be tested experimentally ...



  

Urmossy et. al., Phys. Lett. B, 701: 111-116 (2011), arXiv:1101.3023

p N  ∝ N−N 0
−1e−N−N 0

d

dD x
=∑ f N xN p N  ∝

1−xD N 0−1−1

1−a ln 1−x 
b

Experimentally multiplicity averaged spectra are measured

Miltiplicity distributions show KNO-scaling (Koba-Nielsen-Olesen)

● A. Rényi, Foundations of Probability, Holden-Day (1970).
● A. M. Polyakov, Zh. Eksp. Teor. Fiz. 59, 542 (1970).
● Z. Koba, H. B. Nielsen, P. Olesen, Nucl. Phys. B 40, 317 (1972).
● S. Hegyi, Phys. Lett. B: 467, 126-131, 1999.
● S. Hegyi, Proc. ISMD 2000, Tihany, Lake Balaton, Hungary, 2000
● Yu.L. Dokshitzer, Phys. Lett. B, 305, 295 (1993); LU-TP/93-3 (1993).
 

p N =
1

〈N s〉
 N−N 0

〈N s〉 

A kírérletekkel konzisztens konkrét függvényalak:

Amiből az átlag hadron eloszlás:



  

We see Statistical Physical distributions if

is such that

● Matter created in the collisions reaches equilibrium

dh1 ,, hN = ∣M∣
2

4 

∑i ph i


−Ptot



dh1 ,, hN

● or the cross section of the creation of particles h1 , … , hN

dh1 ,, hN ∝ ∑i h i
−E tot dh1 , , hN

Entropy is maximal in both cases, so the created particles form a
microkanonikus ensembles and thus the single-particle distribution is (m = 0)

f N x  ∝
N−1E−

N E
∝ 1−xD N−1−1 , x=


E
=

p

s /2
for the N-particle phasespace is

N E=∫∏ dD pi  E−∑  j  ∝ EDN−1



  

Parton-model calculation in pp collisions

Goal: find a satisfactory model for

Idea: partons a, b inside protons A, B scatter off of each other.
● A parton carries some momentum fraction x of the momentum of its proton
 with probability-distribution f(x).

  Throughout the scattering of a and b, partons c and d are produced.
● c and d induce jets (showers of hadron, whose distribution is measured).
 Hadrons inside the jets, carry momentum fraction z of the momentum of the

 leading parton c or d with probability distribution D(z).

D  z
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