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Motivation

Not all the resummation schemes can capture the order of the thermal phase
transition of a scalar model.

How good is a systematically improvable resummation scheme, such as the
d-derivable (= two-particle-irreducible (2P1) = Cornwall-Jackiw-Tomboulis (CJT))
formalism, for the description of equilibrium properties ? Up to which order of the
approximation do we have to go to obtain acceptable critical exponents?

1. Study the phase transition beyond Hartree level. [Done already for N =1 in
Minkowski space Arrizabalaga & Reinosa NPA785 (2007) 234, proceedings of SEWM2006.]

2. Work out explicitly at finite temperature the renormalization of the
self-consistent equation propagator, field equation and effective potential.
[Done, appeared on the poster of SEWM2006, but not published]

3. Using Fourier techniques as in Borsanyi & Reinosa PRD 80 (2009) 125029 obtain
(if possible) a more accurate Euclidean solution of the equations than those in
NPA785 (2007) 234.

Tasks 1, 2, 3 completed for N = 1 in G. Marké, U. Reinosa, Zs. Szép, PRD 86, 085031

What about the physically more interesting N = 4 case?



2P| formalism

A bilocal source is introduced in the generating functional
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The 2PI effective action defined through a double Legendre transform
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At vanishing sources (J, K — 0) the physical ¢(z) and G(x,y) are determined
from stationarity conditions
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I'|¢, G] can be rewritten as (see J. Cornwall et al., PRD 10, 2428 )
1 1 .
I'[¢, G] = So(¢) + 5Trlog G + ST |Gy "G — 1] 4 Ting[, G

Sy is the free action

G is the free propagator,

Iint|¢, G| contains all the two-particle-irreducible graphs (graphs which do not
split apart when two propagators are cut) constructed with vertices taken from

Sint (@ + ©)

The 1Pl effective action is recovered: I'yp1[¢p] = T'|¢, G|.



The O(IN) model

Effective potential in the two-loop approximation: (homogeneous ¢,,)
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Gap equations from o
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Curvature tensor

Defining v(¢?) := ~[¢, G, G7] (valid for h = 0) one derives
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Using P = ¢i¢;/¢* and P}, = 6;; — P, one obtains the two eigenmodes:

M} = 49*y"(¢%) +29/(¢%), Mz =2v/(¢%)
Corroborated with the field equation ¢;7'(¢?) = 0, one sees:
1. in the symmetric phase (¢; = 0) M? = M2
2. in the broken phase (¢; # 0) M2 = 0 = Goldstone theorem fulfilled

For h # 0 M,% and M% have the same expressions and show the restoration of
chiral symmetry: M? — M3 for ¢(T — o0) — 0.



Renormalization method

C Berges et al., Annals Phys. 320 (2005) 344
Mass renormalization

In the 2Pl formalism there are two expressions for the two point functions, which
are equivalent in the exact theory, but could be inequivalent in a given truncation,
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iInfluences also the relation between the possible definitions of the three-point
functions (all equivalent in the exact theory).

which

e.g. when X

In the two-loop truncation: My,_q = m% + =% (N)\(A) + 2>\éB))7'[C_¥¢ 0]
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— mj3 # m3, two conditions needed:

1.) M¢ o1, = m? (renormalization condition)
2.) M¢ o.1. = My—o 1, (consistency condition, which needed to be imposed for
the approximation scheme to converge to the exact theory as the order of the
approximation is increased, while keeping the same conditions.)
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The quantities on which the coupling renormalization conditions are imposed
appear by taking functional derivatives of the effective potential w.r.t ¢.

e 1st derivative ~ simple due to the stationarity condition %=~ _=0
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0P,
Bethe-Salpeter-type equation

The formal solution for can be given in terms of V (K, P) satisfying a
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These expressions can be worked out for a concrete truncation. Assuming in our
case the same tensor decomposition for V', V', and VV as for A, A, and A
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one imposes (one) renormalization and (five) consistency conditions which
determine the bare parameters (counterterms)
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The simplest example:
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Hybrid approximation

In the 2-loop approximation it is possible to derive explicitly finite equations, i.e.
do not contain counterterms (for N = 1 details in Marké et al., PRD 86, 085031).
They involve the spectral density, which is not easily accessible when working in
the imaginary time formalism of the finte-T" QFT.

—> we constructed also a hybrid approximation in which the propagators do not
satisfy the stationarity conditions, they are kept at the Hartree level:
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where G(Q) = 1/(Q* + M?) and
Te[G] = T[G] - T[G.] + (M? — m3)B.[G.](0)

IS the finite tadpole integral.



The effective potential goes beyond the Hartree level (vx[¢, G, Gr]) as the
setting-suns are included
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The hybrid model can be solved using adaptive integral routines.



Fourier techniques for the 2-loop approximation

Aim: Calculate using FFT the convolution in momentum space of two rotation
symmetric functions:
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Cutoff and discretization effects in a 3d convolution integral

the result is known exactly: C|G,Gl(p) = 1 arctan —-—

For G(p) =
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Method to compute accurately the 3d convolution using FFT:

CAlGl(p)= G(q)G(q —p)= G«(q)Gx(q — p) + (G(q) + Gx(q)][G(q — p) —G«(q — p)]
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Method for the use of FFT

Longitudinal gap equation after mass renormalization:
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A. Difference of Tadpoles
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numerical integration:
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... Similar procedure for the difference of TrLogs and setting-suns.



The final form of the longitudinal gap equation (/G(Q) = G(Q) — G, (Q))
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Some integrals evaluated using adaptive numerical routines, some using FFT.
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The same method is applied for the transverse gap equation, field equation and
the effective potential.



Do we see any improvement over the Hartree approximation?

Yes, we do.



Order of the phase transition in the 2-loop approximation (/N=1)
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The expected 2"order nature of the phase transition is confirmed by the
temperature evolution of the effective potential.

The hybrid approximation also gives a 2"? order phase transition = what is
iImportant compared to the Hartree approximation is to include the setting-sun in
the field equation



Hartree vs. 2-loop 2Pl (N = 1)

PRD 83, 125026



Hartree vs. 2-loop 2Pl (N = 1)
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Parametrization of the O(IN = 4) model

Without approximation (truncation) the equation are T-invariant.

When an approximation is used the T,-invariance is lost and practical calculation
requires to fix the renormalization scale T, too.

In the chiral limit we have to determine m?2, \,, T, and additionally % in the
physical case.

The problem is that only f, and m, are known accurately, m, and 7T; are not.

We choose to scan the parameter space (m? /T2, \,, h/T?), measure everything
in units of 7, (7% set to 1 in the code) and determine 7. in physical units (MeV)
from the requirement that the value of ¢y = ¢(T = 0) in physical units is f.



Parametrization in the chiral limit h = 0
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along an iso-M, o line ¢o = f. (line of constant physics) and although T, [MeV]
varies along the line, in the exact theory physical quantities should not depend
on T, [MeV]. In our two-loop approximate theory the dependence of T; on
T.[MeV] is around 10%.

o is light, as it is also in the large-N limit, where M7§* ~ 333 MeV was observed
Patkos et al., PLB 537, 77; Andersen et al., PRD 70, 116007



Parametrization in the hybrid approximation at h £ 0

2.4 24

2 2
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1.2 273 304 334 364 394 424 204 209 214 220 225 230

h/T3 |

0

0 40 3
A, 50 45 A,

only points satisfying M, o > 2M, o and M, o = 138 + 14 MeV are considered
where M /o = My r(T = 0)[MeV]

M, o and T}, increase compared to the chiral limit.



Parametrization in the two-loop approximation at h £ 0
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M, o and T},. decrease compared to the hybrid approximation.



Temperature evolution in the chiral limit (2-loop approximation)
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the phase transition is of second order
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Temperature evolution in the hybrid case h # 0
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The negative pressure is related to
the fact that at low T" ¢(T') increases
a bit and only after decreases.

This seems to be an inconsistency
of the hybrid approximation.



Conclusions & Outlook

e A method was constructed to accurately compute at finite-7" convolution
integrals of propagators using Fourier techniques in cutoff regularized theory.

There are practical limitation (huge memory requirement) for a direct use of the
method at small values of the temperature and in case of vanishing masses, but
some sort of extrapolation can be applied.

e The inclusion of the setting-sun diagram in the ®-derivable (2PI) effective
action renders the phase transition second order —> the method can be use to
study thermodynamic quantities.

e The statical critical exponents have mean-field values = higher order
skeleton diagrams need to be included in the 2P| effective action.

e apply the Fourier method to the O(/N) model at NLO of the 2PI-1/N expansion.
Huge memory requirement expected because some of the procedures used to
accelerate the convergence of Matsubara integrals with increasing V.. will not
work.



