Reciprocity - a symmetry of quantum and wave scattering processes

T. Fülöp
Zimányi School, Budapest, 6th Dec. 2012

L. Deák ${ }^{1}$ and T. Fülöp ${ }^{1}$, Annals of Physics 327 (2012) 1050
L. Deák ${ }^{1}$, L. Bottyán ${ }^{1}$, T. Fülöp ${ }^{1}$, G. Kertész ${ }^{1}$, D. L. Nagy ${ }^{1}$,
R. Rüffer ${ }^{2}$, H. Spiering ${ }^{3}$, F. Tanczikó ${ }^{1}$, and G. Vankó ${ }^{1}$,

Phys. Rev. Lett. 109 (2012) 237402
${ }^{1}$ Wigner RCP, Budapest
${ }^{2}$ ESRF, Grenoble
${ }^{3}$ University of Mainz

What is reciprocity?

'The path of a light ray can be reversed'
G. Stokes, Cambridge Dublin Math. J. 4 (1849) 89: introduced in geometrical optics, used for amplitudes t, r at $n_{1} \mid n_{2}$
H. von Helmholtz, Handbuch der Physiologischen Optik (1866); J.W. Strutt, Baron Rayleigh, The theory of sound (1877): for waves (electromagnetic, acoustic, elastic),
signal (source at A, measurement at B) $=$
$=\operatorname{signal}($ source at B, measurement at $A)$
Signal: amplitude and phase

Reciprocity: invariance under the interchange of source and detector

Nonscalar signals (polarization, spin etc.): what to do with these degrees of freedom? Different suggestions

Landau-Lifshitz started to use the term 'reciprocity' with the meaning 'invariance under time reversal' (T)

Note: reciprocity may hold for absorption as well

Others: invariance under 180° rotation $\left(R_{180^{\circ}}\right)$

Even others: invariance under $P T$
'microreversibility', 'principle of detailed balance'; 'dichroism'

Here, now:

- the original meaning
- presented in a generally applicable formalism
- with illustrations and examples

Preparations:

Let's (re)write the equation of our linear wave propagation as $i \partial_{t} \psi=H \psi$ with a one- or multicomponent ψ

Note: Maxwell eqns.: $\psi=\binom{\mathbf{E}}{\mathbf{B}}, \mathrm{KG}: \psi=\binom{\phi}{\left(\partial_{t}-i e A_{0}\right) \phi}$, can also be some effective equation (e.g., to approximate multiple scattering with scattering on an effective medium)
$H=H_{0}+V$, where
H_{0} : free wave propagation
V : scatterer
We need a scalar product (probability, energy functional etc.)
$V=V^{\dagger}$ not required: absorption of probability/energy

Scattering theory:
Lippmann-Schwinger formalism (notations: Schiff)
$G_{E}^{ \pm}:=(E-H \pm i \epsilon)^{-1}$
$\chi^{ \pm}:=u+G_{E}^{ \pm} V u, \quad \chi^{T \pm}:=u+G_{E}^{\mp \dagger} V^{\dagger} u$,
where u is an eigenstate of H_{0} with real eigenvalue E (free incoming/outgoing part)

The transition amplitude of an elastic scattering process $u_{\alpha} \rightarrow u_{\beta} \quad\left(E_{\alpha}=E_{\beta}\right):$

$$
\langle\beta| \mathrm{T}|\alpha\rangle:=\left(u_{\beta}, V \chi_{\alpha}^{+}\right)=\left(\chi_{\beta}^{T-}, V u_{\alpha}\right)
$$

Antiunitary operators:
 (a.k.a. conjugate unitary)

isometric: $\|K \psi\|=\|\psi\|$
and conjugate linear: $K\left(\lambda_{1} \psi_{1}+\lambda_{2} \psi_{2}\right)=\lambda_{1}^{*} K \psi_{1}+\lambda_{2}^{*} K \psi_{2}$
Consequence: $\left(K \psi_{1}, K \psi_{2}\right)=\left(\psi_{2}, \psi_{1}\right) \quad$ (physics: in \leftrightarrow out $)$

Example from mathematics: complex conjugation: $J \psi=\psi^{*}$
Example from physics: time reversal T

They are 'the same in number' as unitary ones: with any fixed K_{0}, any K can be written as $K=U K_{0}$ with a unitary U
"A good definition should be the hypothesis of a theorem."
(J. Glimm)
K is a reciprocity operator of a system if

$$
K H_{0} K^{-1}=H_{0} \quad \text { and } \quad K V K^{-1}=V^{\dagger}
$$

\Longrightarrow Reciprocity theorem for the Green's operators:

$$
K G_{E}^{ \pm} K^{-1}=G_{E}^{ \pm \dagger}
$$

The reciprocal partner of $u_{\alpha} \rightarrow u_{\beta}: K u_{\beta} \rightarrow K u_{\alpha}$
\Longrightarrow Reciprocity theorem for the transition amplitude:

$$
\langle\beta| \mathrm{T}|\alpha\rangle=\langle K \alpha| \mathrm{T}|K \beta\rangle
$$

Discussion:

Condition on both the scatterer and the process (vs. 'magneto-optical materials are nonreciprocal')

Not a rotation: antiunitary
T is just one possible K from the many
Particle physics: $C P$ violated, $C P T$ probably not \Longrightarrow T violated [plus BABAR, PRL 109 (2012) 211801], but some other K is possible
T may be a reciprocity operator even if no T invariance $\left(T V T^{-1} \neq V\right.$ does not exclude $\left.T V T^{-1}=V^{\dagger}\right)$ Nuclear physics: optical potentials

Reciprocity violation:

with $V=V_{+}+V_{-}, \quad V_{ \pm}:=\frac{1}{2}\left(V \pm K^{-1} V^{\dagger} K\right)$,
we can find

$$
\langle\beta| \mathrm{T}|\alpha\rangle-\langle K \alpha| \mathrm{T}|K \beta\rangle=\left(\chi_{+, \beta}^{T-}, V_{-} \chi_{\alpha}^{+}\right)-\left(\chi_{+, K \alpha}^{T-}, V_{-} \chi_{K \beta}^{+}\right)
$$

In the first Born approximation,

$$
\approx 2\left(u_{\beta}, V_{-} u_{\alpha}\right)
$$

n-component wave function:
$\psi(\mathbf{r})=\left(\begin{array}{c}\psi_{1}(\mathbf{r}) \\ \psi_{2}(\mathbf{r}) \\ \vdots \\ \psi_{n}(\mathbf{r})\end{array}\right)$,
photon pol. neutron spin isospin etc.
$H_{0}:=-\Delta, \quad u_{\alpha}(\mathbf{r})=p_{\alpha} e^{i \mathbf{k}_{\alpha} \mathbf{r}}$
$K:=U J, \quad$ where U constant $n \times n, \quad J \psi=\psi^{*} \quad\left(\right.$ serving as $\left.K_{0}\right)$

$$
\begin{array}{ll}
\left(K u_{\alpha}\right)(\mathbf{r})=\left(U p_{\alpha}^{*}\right) e^{-i \mathbf{k}_{\alpha} \mathbf{r}}: \quad \mathbf{k}_{\alpha} \mapsto-\mathbf{k}_{\alpha}, & p_{\alpha} \mapsto U p_{\alpha}^{*} \\
K V K^{-1}=V^{\dagger}: \quad V=U V^{\top} U^{-1} & \left(V^{\top}\right)_{i j}=V_{j i}
\end{array}
$$

Mathematical results:

$n \leq 7$ dimensional complex matrices:

$$
\begin{aligned}
(\exists U) V=U V^{\top} U^{-1} & \Longleftrightarrow(\exists \tilde{U}) \quad\left(\tilde{U} V \tilde{U}^{-1}\right)^{\top}=\tilde{U} V \tilde{U}^{-1} \\
& \text { (i.e., can be transformed to self-transpose) }
\end{aligned}
$$

And, for any finite n : complete classification of V s with $V=U V^{\top} U^{-1}$
S.R. Garcia, J.E. Tener, J. Operator Theory 68 (2012) 179
U acting on \mathbf{r} as well: open question

Neutron or Mössbauer scattering: $\psi=\binom{\psi_{1}}{\psi_{2}}$,
$V=v_{0} \sigma_{0}+v_{1} \sigma_{1}+v_{2} \sigma_{2}+v_{3} \sigma_{3}=v_{0} \sigma_{0}+\mathbf{v} \boldsymbol{\sigma}$ with $\quad \sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ neutron: $\mathbf{v}=c \mathbf{B}$, photon Mössbauer: $\mathbf{v}=\mathbf{v}(\mathbf{B})$

In a good polarization basis: $\exists K \Longleftrightarrow V_{12}(\mathbf{r})=V_{21}(\mathbf{r})$ m homogeneous layers, $V_{1}, V_{2}, \ldots V_{m}$: criterion:
$\operatorname{Re} \mathbf{v}_{1}, \operatorname{Im} \mathbf{v}_{1}, \operatorname{Re} \mathbf{v}_{2}, \operatorname{Im} \mathbf{v}_{2}, \ldots \operatorname{Re} \mathbf{v}_{m}, \operatorname{Im} \mathbf{v}_{m}$ in one plane
Magnitude reciprocity: $\left.\quad|\langle\beta| \mathrm{T}| \alpha\rangle\left.\right|^{2}=|\langle K \alpha| \mathrm{T}| K \beta\right\rangle\left.\right|^{2}$ (most measurements see only intensities!)

$$
V_{12}(\mathbf{r})=e^{i \delta} V_{21}(\mathbf{r}) \quad(\text { with an } \mathbf{r} \text { independent } \delta)
$$

In experiments:

there is considerable absorption \Longrightarrow no T invariance choosing layers appropriately \Longrightarrow no $R_{180^{\circ}}$ invariance

Tuning the relative position/orientation of layers and the polarization conditions, reciprocity can be maintained or violated at wish

Example energy spectra and time spectra:

Applications of reciprocity:

electric circuits
antenna theory
neutron and x-ray diagnostics
microelectronic devices (on-chip integration)
acoustics
seismology
nuclear physics
particle physics

