Reciprocity – a symmetry of quantum and wave scattering processes

T. Fülöp

Zimányi School, Budapest, 6th Dec. 2012

L. Deák¹ and T. Fülöp¹, Annals of Physics **327** (2012) 1050

L. Deák¹, L. Bottyán¹, T. Fülöp¹, G. Kertész¹, D. L. Nagy¹,
R. Rüffer², H. Spiering³, F. Tanczikó¹, and G. Vankó¹, *Phys. Rev. Lett.* **109** (2012) 237402

- ¹ Wigner RCP, Budapest
- 2 ESRF, Grenoble
- 3 University of Mainz

What is reciprocity?

'The path of a light ray can be reversed'

G. Stokes, Cambridge Dublin Math. J. 4 (1849) 89: introduced in geometrical optics, used for amplitudes t, r at $n_1|n_2$

H. von Helmholtz, Handbuch der Physiologischen Optik (1866);J.W. Strutt, Baron Rayleigh, The theory of sound (1877):for waves (electromagnetic, acoustic, elastic),

signal (source at A, measurement at B) =

= signal (source at B, measurement at A)

Signal: amplitude and phase

Reciprocity: invariance under the interchange of source and detector

Nonscalar signals (polarization, spin etc.): what to do with these degrees of freedom? Different suggestions

Landau-Lifshitz started to use the term 'reciprocity' with the meaning 'invariance under time reversal' (T)Note: reciprocity may hold for absorption as well

Others: invariance under 180° rotation $(R_{180^{\circ}})$

Even others: invariance under PT

'microreversibility', 'principle of detailed balance'; 'dichroism'

Here, now:

- the original meaning
- presented in a generally applicable formalism
- with illustrations and examples

Preparations:

Let's (re)write the equation of our linear wave propagation as $i\partial_t \psi = H\psi$ with a one- or multicomponent ψ

Note: Maxwell eqns.:
$$\psi = \begin{pmatrix} \mathbf{E} \\ \mathbf{B} \end{pmatrix}$$
, KG: $\psi = \begin{pmatrix} \phi \\ (\partial_t - ieA_0)\phi \end{pmatrix}$,

can also be some effective equation (e.g., to approximate multiple scattering with scattering on an effective medium)

 $H = H_0 + V$, where H_0 : free wave propagation V: scatterer

We need a scalar product (probability, energy functional etc.)

 $V = V^{\dagger}$ not required: absorption of probability/energy

Scattering theory: Lippmann-Schwinger formalism (notations: Schiff)

$$G_E^{\pm} := (E - H \pm i\epsilon)^{-1}$$

$$\chi^{\pm} := u + G_E^{\pm} V u, \qquad \chi^{T\pm} := u + G_E^{\pm \dagger} V^{\dagger} u,$$

where u is an eigenstate of H_0 with real eigenvalue E (free incoming/outgoing part)

The transition amplitude of an elastic scattering process $u_{\alpha} \rightarrow u_{\beta} \quad (E_{\alpha} = E_{\beta}):$

$$\langle \beta | \mathbf{T} | \alpha \rangle := (u_{\beta}, V\chi_{\alpha}^{+}) = (\chi_{\beta}^{T-}, Vu_{\alpha})$$

Antiunitary operators: (a.k.a. conjugate unitary)

isometric: $||K\psi|| = ||\psi||$

and conjugate linear: $K(\lambda_1\psi_1 + \lambda_2\psi_2) = \lambda_1^*K\psi_1 + \lambda_2^*K\psi_2$ Consequence: $(K\psi_1, K\psi_2) = (\psi_2, \psi_1)$ (physics: in \leftrightarrow out)

Example from mathematics: complex conjugation: $J\psi = \psi^*$

Example from physics: time reversal T

They are 'the same in number' as unitary ones: with any fixed K_0 , any K can be written as $K = UK_0$ with a unitary U

"A good definition should be the hypothesis of a theorem." (J. Glimm)

K is a reciprocity operator of a system if $KH_0K^{-1} = H_0$ and $KVK^{-1} = V^{\dagger}$

 \implies Reciprocity theorem for the Green's operators: $KG_E^{\pm}K^{-1} = G_E^{\pm \dagger}$

The reciprocal partner of $u_{\alpha} \to u_{\beta} : Ku_{\beta} \to Ku_{\alpha}$

 $\implies \textbf{Reciprocity theorem for the transition amplitude:}$ $\langle \beta \, | \, \mathbf{T} | \, \alpha \rangle = \langle K \alpha \, | \, \mathbf{T} | \, K \beta \rangle$

Discussion:

Condition on both the scatterer and the process (vs. 'magneto-optical materials are nonreciprocal')

Not a rotation: *anti*unitary

T is just one possible K from the many Particle physics: CP violated, CPT probably not \Longrightarrow T violated [plus BABAR, PRL 109 (2012) 211801], but some other K is possible

T may be a reciprocity operator even if no T invariance $(TVT^{-1} \neq V \text{ does not exclude } TVT^{-1} = V^{\dagger})$ Nuclear physics: optical potentials

Reciprocity violation:

with $V = V_+ + V_-$, $V_{\pm} := \frac{1}{2} \left(V \pm K^{-1} V^{\dagger} K \right)$, we can find

$$\left\langle \beta \left| \mathsf{T} \right| \alpha \right\rangle - \left\langle K \alpha \left| \mathsf{T} \right| K \beta \right\rangle = \left(\chi_{+,\beta}^{T-}, V_{-} \chi_{\alpha}^{+} \right) - \left(\chi_{+,K\alpha}^{T-}, V_{-} \chi_{K\beta}^{+} \right) \right\rangle$$

In the first Born approximation,

$$\approx 2(u_{\beta}, V_{-}u_{\alpha})$$

n-component wave function:

$$\psi(\mathbf{r}) = \begin{pmatrix} \psi_1(\mathbf{r}) \\ \psi_2(\mathbf{r}) \\ \vdots \\ \psi_n(\mathbf{r}) \end{pmatrix}, \qquad V(\mathbf{r}) \ n \times n \text{ matrix}$$

photon pol. neutron spin isospin etc.

$$H_0 := -\Delta \ , \quad u_{lpha}({f r}) = p_{lpha} e^{i{f k}_{lpha}{f r}}$$

K := UJ, where U constant $n \times n$, $J\psi = \psi^*$ (serving as K_0)

 $(Ku_{\alpha})(\mathbf{r}) = (Up_{\alpha}^{*}) e^{-i\mathbf{k}_{\alpha}\mathbf{r}} : \mathbf{k}_{\alpha} \mapsto -\mathbf{k}_{\alpha}, \quad p_{\alpha} \mapsto Up_{\alpha}^{*}$

$$KVK^{-1} = V^{\dagger}: \quad V = UV^{\mathsf{T}}U^{-1} \qquad \left(V^{\mathsf{T}}\right)_{ij} = V_{ji}$$

Mathematical results:

$n \leq 7$ dimensional complex matrices: $(\exists U) \ V = UV^{\mathsf{T}}U^{-1} \iff (\exists \tilde{U}) \ (\tilde{U}V\tilde{U}^{-1})^{\mathsf{T}} = \tilde{U}V\tilde{U}^{-1}$ (i.e., can be transformed to self-transpose)

And, for any finite n: complete classification of Vs with $V = UV^{\mathsf{T}}U^{-1}$

S.R. Garcia, J.E. Tener, J. Operator Theory 68 (2012) 179

U acting on ${\bf r}$ as well: open question

Neutron or Mössbauer scattering: $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$,

$$V = v_0 \sigma_0 + v_1 \sigma_1 + v_2 \sigma_2 + v_3 \sigma_3 = v_0 \sigma_0 + \mathbf{v} \boldsymbol{\sigma}$$

with $\sigma_0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
neutron: $\mathbf{v} = c\mathbf{B}$, photon Mössbauer: $\mathbf{v} = \mathbf{v}(\mathbf{B})$

In a good polarization basis: $\exists K \iff V_{12}(\mathbf{r}) = V_{21}(\mathbf{r})$ m homogeneous layers, $V_1, V_2, \ldots V_m$: criterion: $\operatorname{Re}\mathbf{v}_1, \operatorname{Im}\mathbf{v}_1, \operatorname{Re}\mathbf{v}_2, \operatorname{Im}\mathbf{v}_2, \ldots \operatorname{Re}\mathbf{v}_m, \operatorname{Im}\mathbf{v}_m$ in one plane

Magnitude reciprocity: $|\langle \beta | \mathbf{T} | \alpha \rangle|^2 = |\langle K\alpha | \mathbf{T} | K\beta \rangle|^2$ (most measurements see only intensities!) $V_{12}(\mathbf{r}) = e^{i\delta}V_{21}(\mathbf{r})$ (with an \mathbf{r} independent δ)

In experiments:

- there is considerable absorption \implies no T invariance choosing layers appropriately \implies no R_{180° invariance
- Tuning the relative position/orientation of layers and the polarization conditions, reciprocity can be maintained or violated at wish
- Example energy spectra and time spectra:

Applications of reciprocity:

electric circuits

antenna theory

neutron and x-ray diagnostics

microelectronic devices (on-chip integration)

acoustics

seismology

nuclear physics

particle physics