
Angular correlations of non-identified 
particles in pp collisions in ALICE

1

Jeremi Niedziela
Warsaw University of Technology



Outline

1. Introduction - angular correlations
2. Analysis results
3. Fitting formula
4. Results of fitting function
5. Summary

2



ΔηΔφ phase space

z - the beam axis
φ - azimuthal angle
θ - polar angle
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ΔηΔφ correlation function

Signal:
correlation of 2 particles 

from the same event

Background:
correlation of 2 particles from 
different events (no physical 

correlation)

Δη = η1 - η2

Δφ = φ1 - φ2

Correlation function = 
Signal * NSignal  

Background * NBackground
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Theory behind angular correlations
Minijets
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Minijets have contribution 
to near-side peak (because 
particles from the same 
jet travel in the same 
direction) and to away-
side ridge (because of 
particles from back-to-
back jets, when Δφ ≈ 0).

Near-side peak
(correlation of particles 

from the same jet)

Away-side ridge
(back-to-back jets)



Photon conversion

Photon conversion
(Δη,Δφ)≈0

Theory behind angular correlations
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When photon decays 
into electron-positron 
pair, they travel almost 
the same direction. 
Δη and Δφ are very 
s m a l l , s o i t h a s 
contribution to near-
side peak.



Bose-Einstein correlations
(Δη,Δφ)≈0

Theory behind angular correlations
Bose-Einstein correlations
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D u e t o q u a n t u m 
mechanics   two identical 
bosons will be created 
together and in most 
cases - travel almost the 
same direction. Because 
of that they will also have 
contribution to near-side 
peak.



Resonances, string 
fragmentation

Theory behind angular correlations
Resonances, string fragmentation
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According to ISR experiment, 
some resonances’ decays can 
produce structure with Δη ≈ 0 
and no dependance in Δφ.
[Nuclear Physics B86 (1975)]

Also fragmenting string can 
produce such structure, when 
bounded quarks decay and create 
new particles, which have almost 
the same θ angle, but there’s no 
dependance in Δφ.

z
Longitudinally fragmenting strings

Δθ≈0
Δφ - without dependance



Theory behind angular correlations
Overall picture:

- minijets
- Bose-Einstein correlations
- photon conversion
- momentum conservation
- resonances
- ...
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minijets, Bose-Einstein 
correlations, photon 

conversion

back-to-back jets

resonances, string 
fragmentation



Analysis setup

- pp events at 7 TeV registered by ALICE in 2010

-153M minimum bias events

- TPC and ITS detectors of ALICE used for particles reconstruction

- |η|<1.0 and pT>0.12 GeV/c acceptance for single particle

- Pythia and Phojet Monte Carlo generators have been used

- Anti-gamma cut was used to remove photon conversion

- error for correlation function <2% (excluding (0,0) bin where error 

can be bigger) 
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Charge dependance

Because of only statistical difference between positive-sign pairs and negative-
sign pairs, results for those two can be merged if higher statistics is needed.
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Multiplicity distribution
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Correlation vs. multiplicity

Higher multiplicity: correlations per pair decrease (i.e. lower near side peak)

Like sign

Unlike sign

multiplicity

2-11 23-29 45-57
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Correlation vs. pT-SUM

Like sign: in the first bin the peak is higher than in the second due to the Bose-Einstein correlations. 
Increasing in further bins (minijets). Effect observed because Bose-Einstein correlations are more 
prominent for low transverse momenta and minijet correlations for high. Unlike sign: increasing peak 
with increasing pT bins (minijets). 
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Low multiplicities (unlike sign) comparison with Pythia and Phojet
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MC generators don’t reproduce some effects for low multiplicity



Fitting function
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Fitting results (example)

Function fitted to the correlation function obtained from analysis

Correlation function Fitted function Subtraction Longitudinal ridge 

Near side peak Away side ridge Normalization Wings
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Summary

●  Analyses for like-sign and unlike-sign pairs in different multiplicity and pT-sum

bins have been done;
●  Low multiplicity dedicated analyses were performed;
●  Comparison with MC simulation results; 
●  Formula fitted to collision data in multiplicity and pT-sum bins and to MC

simulations;
●  Systematical and statistical errors of fit parameters calculated;
●  Detector efficiency for multiplicity bins taken into account
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Backup
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Different productions

There are some significant differences visible for different productions.
This effects have been taken into account while calculating systematical errors. 
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Wings correction

Wings correction procedure was applied to remove the wing structure and 
the longitudinal ridge. Values in every bin were divided by corresponding 
value from Δφ ≈ π bin and multiplied by mean value for this bin. Plot c 

presents subtraction of the function before and after correction.
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Detector efficiency depends on pT

Because of non-constant 
detector efficiency depends 
on particle transverse 
momentum, the correlation 
function should be 
corrected as shown in 
bottom figure.

Some significant differences 
can be seen, especially for 
near-side peak and away-
side ridge.
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Like sign pairs correlation vs. multiplicity vs. pT

Lowest multiplicity and pT bins shown: for like sign as expected.
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Systematic uncertainty
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