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Introduction

Relativistic energies,
relativistic velocities
(v ≈ 0.99c)

Lorentz contraction

High excited
nonequilibrium system
(energy density
∼GeV/fm3)

High multiplicity of
secondary particles

Short life-time of the

system (∼10–20 fm/c)
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Stages of Fireball Evolution
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Sharp freeze-out hypersurface definition

The sharp freeze-out hypersurface is defined with the help of some

parameter P(t , r) which takes the critical value Pc on the hypersurface:

P(t , r ) = Pc

1) the density of particles n(t , r ):
D.Adamova et al. (CERES Collaboration), Phys. Rev. Lett. 90, 022301 (2003).

2) the energy density ǫ(t , r):
V.N. Russkikh and Y.B. Ivanov, Phys. Rev. C 76, 054907 (2007);

J. Sollfrank, P. Huovinen, and P.V. Ruuskanen, Eur. Phys. J. C 6, 525 (1999)

3) the temperature T (t , r):
H. von Gersdorff, L. McLerran, M. Kataja, and P.V. Ruuskanen, Phys. Rev. D34, 794 (1986);

P. Huovinen, Eur. Phys. J. A37, 121 (2008)
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Particle (pion) four-flow:

Nµ(x) =

∫

d3p
p0 pµ f (x , p) = (nlab, nlabvE ) .

Collective velocity (Eckart definition):

uµ(x) =
Nµ

(NνNν)
1
2

= (γE , γE v E ) .

Pion energy-momentum tensor:

T µν(x) =
∫

d3p
p0 pµ pν f (x , p) .

Invariant particle density

n(x) = Nµ(x)uµ(x) .

Invariant particle energy density

ǫ(x) = uµ(x) T µν(x) uν(x) .
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Freezeout hypersurfaces calculation algorithm

Invariant particle density

n(x) = Nµ(x)uµ(x) .

Invariant particle energy density

ǫ(x) = uµ(x) T µν(x) uν(x) .

Equation n(x) = nc or ǫ(x) = ǫc defines pionic freezeout hypersurface.

Calculations within UrQMD (Ultrarelativistic quantum molecular

dynamics) microscopic transport model designed for description of

relativistic heavy-ion collisions

S.A. Bass, M. Belkacem, M. Bleicher et al., Prog. Part. Nucl. Phys. 41, 225 (1998);

M. Bleicher, E. Zabrodin, C. Spieles et al., J. Phys. G: Nucl. Part. Phys. 25, 1859 (1999).
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Freezeout hypersurfaces calculation algorithm
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Freezeout Hypersurface in (t , r , z) coordinates for AGS

conditions

Invariant π− density Invariant π− energy density
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Freezeout Hypersurface in (t , r , z) coordinates for SPS

conditions

Invariant π− density Invariant π− energy density
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Freezeout Hypersurface in (t , r , z) coordinates for RHIC

conditions

Invariant π− density Invariant π− energy density

n(t , r ) = nc and ǫ(t , r) = ǫc give same hypersurfaces.
Specific correspondence between nc and ǫc .
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Pionic Freezeout Temperature

Assuming relativistic ideal dilute gas at freezeout

ǫc

nc
= 3Tf + mπ

K1(mπ/Tf)

K2(mπ/Tf)
.

Solving the equation yields Tf = 128 MeV for AGS and SPS energies.

Tf increases to 164 MeV at RHIC energy of
√

s = 130A GeV.
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Space-time Evolution Parameters
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Ekin
√

sAA A + A τ R⊥ R‖

(A GeV) (A GeV) (fm/c) (fm) (fm)

10.8 4.88 Au + Au 9 6 2
20.0 6.41 Pb + Pb 9 6 3
40.0 8.86 8.75 6.5 5
80.0 12.39 8.75 6.5 7
158.0 17.32 8.5 6.5 7.5
202.9 19.6 Au + Au 8.25 6.5 7.5
2047.0 62.0 8.75 6.5 8.75
9007.0 130.0 10 6.5 10
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(z, t) Projection of Freezeout Hypersurface
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t-z projectionnC = 0.08 fm-3

Upper (space-like) boundary is well approximated by

tFO(z) = t0
FO

+
√

τ 2
FO

+ z2 .

Ekin
√

sAA A + A t0
FO τFO

(A GeV) (A GeV) (fm/c) (fm/c)

40.0 8.86 Pb + Pb -7 15.75
80.0 12.39 -3 11.75
158.0 17.32 -0.75 9.25
202.9 19.6 Au + Au -0.25 8.5
2047.0 62.0 -0.05 8.8
9007.0 130.0 0 9.25

D. Anchishkin, V. Vovchenko, L.P. Csernai, arXiv:1211.1927 [nucl-th].
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Reaction Zones

Definition of the fireball

The space-time region where the reactions between the net
particles, created particles take place we name as ”fireball”.

The investigation of the reaction zones is equivalent to
investigation of the fireball.

4-density of the number of reactions 2 → 2

Γ(x) =
∫

dp1 dp2 dp3 dp4 W12→34 f1(x) f2(x) [1 ± f3(x)] [1 ± f4(x)]

x = (t , r ), fi(x) = f (x ,pi), dpi = d3pi/(2π)3Ei
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Reaction Zone Calculation Algorithm

Number of reactions in the given space-time region Ω

Ncoll(Ω) =

∫

Ω

d4x Γ(x).
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Reaction Zone Calculation Algorithm

Number of reactions in the given space-time region Ω

Ncoll(Ω) =

∫

Ω

d4x Γ(x).
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Reaction Zone in (t , r , z) coordinates, r = ±
√

x2 + y2
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t − z projection of Reaction Zones

Reaction Zone division time is approximately invariant of collision energy
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Freezeout Hypersurfaces vs Reaction Zones

Pionic freezeout hypersurfaces can be put into correspondence to inelastic

reaction zones
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Conclusions

1 We show that pionic freezeout description with the use of pion
density and pion energy density are equivalent and there is
correspondence between nc and ǫc values.



Introduction Freezeout hypersurfaces Reaction Zones Conclusions

Conclusions

1 We show that pionic freezeout description with the use of pion
density and pion energy density are equivalent and there is
correspondence between nc and ǫc values.

2 We show that fireball lifetime and it’s maximum spatial size are
approximately invariant of collision energy. The approximation of
[t − z] projection of freezeout hypersurface in the form of
modified hypersurface of constant proper time is introduced.
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Conclusions

1 We show that pionic freezeout description with the use of pion
density and pion energy density are equivalent and there is
correspondence between nc and ǫc values.

2 We show that fireball lifetime and it’s maximum spatial size are
approximately invariant of collision energy. The approximation of
[t − z] projection of freezeout hypersurface in the form of
modified hypersurface of constant proper time is introduced.

3 Pionic freezeout hypersurface are compared to inelastic reaction
zones and it is shown that they can be put into correspondence.
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Thanks for your attention!
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