# Low momentum proton identification in $p+A$ interaction at SPS energies 

Krisztina Márton

Wigner RCP, RMKI
Budapest, Hungary

## Outline

- NA61/SHINE Experiment
- Low momentum particles in $\mathrm{h}+\mathrm{A}$ collisions
- Low Momentum Particle Detector (LMPD)
- Detector construction
- Calibration
- Identification of slow protons with LMPD


## NA61/SHINE at CERN SPS



- Fixed-target experiment at the CERN SPS
- Physics program: measurement of hadron productions in p+p, $\mathbf{p}+\mathbf{A}, \mathrm{h}+\mathrm{A}$ and $\mathrm{A}+\mathrm{A}$ collisions


## NA61

 data statistics 2012

| 158 GeV p+Pb | Magnet | event <br> Target in | event <br> Target <br> out |
| :---: | :---: | :---: | :---: |
| $\mathbf{1 5 8} \mathbf{G e V} \mathbf{p + P b}$ | $\mathbf{1 5 8}$ GeV field | $\mathbf{4 . 1 3 M}$ | $\mathbf{0 . 4 1 M}$ |
| 120 GeV p+C | Only VTX2 | 2.60 M | 0.27 M |
| 158 GeV h-+C | Only VTX2 | 0.93 M | 0.35 M |
| 158 GeV K-+C | Only VTX2 | 0.95 M | 0.19 M |
| $\mathbf{1 5 8}$ GeV p+Pb | $\mathbf{1 5 8}$ GeV field | $\mathbf{9 . 4 0 M}$ | $\mathbf{0 . 9 3 M}$ |
| Krypton VTX1 |  | 4.26 M |  |
| Krypton GTPC |  | 1.43 M |  |
| Krypton LMPD |  | $\mathbf{1 . 5 9 M}$ |  |

## Low momentum particles in h+A collisions

- Early emulsion experiments $\rightarrow$ number of "heavy tracks" ( $(<0.7$ ) is correlated to the number of hadron-nucleon collisions inside the nucleus
- Black tracks ( $ß<0$.3)
- isotropic angular distribution
- associated with the last stage, the evaporation of the final nucleus
- number Nb measures the nuclear excitation energy
- Grey particles ( $0.3<\beta<0.7$ )
- angular distribution forward peaked
- originate from the intranuclear cascade


## Low momentum particles in $h+A$ collisions

- Angular distributions of grey protons
- significant dependence on A (the target mass number), stronger forward-peaked for lighter targets than for heavier ones
- shape and height of the angular distributions do not depend on the incoming energy
- at fixed A the dependence on the projectile is only weak

The number of slow particles measures the centrality or peripherality of a hadron-nucleus collision.

## LMPD - Physics objectives

- Centrality of h+A collision is correlated to the number of slow ("gray") nucleons (produced by the "breakup" of the nucleus)


LMPD $\rightarrow$ identification and energy measurement of low momentum particles in $\mathrm{p}^{+}$A collisions $\rightarrow$ Centrality Detector

## LMPD - Operation principle

- TPC, intervals in particle range defined by absorber layers
- Simultaneous measurement of $\mathrm{dE} / \mathrm{dx}$ and range: energy and identification



## Low Momentum Particle Detector

## Readout chamber (MWPC)

 Cathode plane

## Low Momentum Particle Detector



## Events in LMPD


$\mathrm{p}+\mathrm{Pb}$ at $158 \mathrm{GeV} / \mathrm{c}$ (0.5 mm target)

## Tracking performance



- Independent track reconstruction inside wedges
- Main vertex (target) visible after tracking


## Calibration of LMPD

- Krypton calibration
$\rightarrow$ Relative gain calibration of pads
(3D cluster finding, 3 iteration)
$\rightarrow$ For absolute gain calibration:

- Different HV settings
- Gradually increasing gain towards outer pad-rows
- Drift velocity calibration, correction for tracks direction, etc. in progress


## Krypton spectra - before calibration







## Krypton spectra - after calibration







## Krypton calibration: Position of last peak (41.6keV), before calibration












## Krypton calibration: Position of last peak (41.6keV), after calibration



## Energy deposit distribution for particles stopped in 3rd absorber



Before Kr calibration


After Kr calibration

## Proton identification with LMPD



Particles reconstructed
stop in $2^{\text {nd }}$ absorber



Typical event in LMPD
(p+Pb data, 2011)

## Proton identification with LMPD



Particles stopped in 2nd absorber $\rightarrow$ proton peak visible (2011 data, without calibration)

## Energy deposit distributions After Kr calibration, with vertex (and direction) cuts

Particles stopped in 2nd absorber


Particles stopped in 4th absorber


Particles stopped in 3rd absorber


Particles pass through the chamber


## Summary

- Low Momentum Particle Detector (LMPD) at NA61
- TPC with absorber layers $\rightarrow$ range and $\mathrm{dE} / \mathrm{dx}$
- Identification and energy of slow particles
- $\mathrm{p}+$ A collisions $\rightarrow$ centrality is correlated to the number of grey protons
- LMPD ~ Centrality Detector in the $\mathrm{p}+\mathrm{Pb}$ run at NA61
- Calibration in progress
- Proton peak is visible



## Backup

## Data taking with LMPD

| 2011 | Number of events |
| :---: | :---: |
| $\mathrm{Pb}, 0.5 \mathrm{~mm}$ | 2442.5 k |
| $\mathrm{Pb}, 0.5 \mathrm{~mm}$ <br> (rotated) | 617.5 k |
| $\mathrm{C}, 2 \mathrm{~mm}$ | 547.5 k |
| $\mathrm{Al}, 1 \mathrm{~mm}$ | 621.9 k |
| Target Out | 263.6 k |


| 2012 | Number of events |
| :---: | :---: |
| Kr calibration | 1593.1 k |
| $\mathrm{Pb}, 1 \mathrm{~mm}$ | 8196.4 k (Sept.) |
| Target Out | 830.6 k (Sept.) |

## Cluster distributions



- Horizontal vertical coordinates of all clusters
- Top and bottom of chamber visible
- Drift velocity: $\approx 0.89 \mathrm{~cm} / \mu \mathrm{s}$


## Number of Clusters in 1 event


3. Wedge


4. Wedge


## Position resolution



- Position resolution in horizontal direction ~ 1-2 mm
- Position resolution is vertical direction $\sim 1$ timebin $\approx 1.8 \mathrm{~mm}$


## Tracking performance direction of tracks





## Number of tracks per events <br> (2011 data)



