

Low momentum proton identification in p+A interaction at SPS energies

Krisztina Márton

Wigner RCP, RMKI Budapest, Hungary

Zimanyi Winter School, Budapest

06.12.2012

Outline

- NA61/SHINE Experiment
- Low momentum particles in h+A collisions
- Low Momentum Particle Detector (LMPD)
 - Detector construction
 - Calibration
- Identification of slow protons with LMPD

NA61/SHINE at CERN SPS

- Fixed-target experiment at the CERN SPS
- Physics program: measurement of hadron productions in p+p, p+A, h+A and A+A collisions

NA61		Magnet	event Target in	event Target out
data statistics	158 GeV p+Pb	30 GeV field	0.80M	0.02M
2012	158 GeV p+Pb	158 GeV field	4.13M	0.41M
	120 GeV p+C	Only VTX2	2.60M	0.27M
NA61 data statistics 2012 ×10 ³	158 GeV h-+C	Only VTX2	0.93M	0.35M
8000	158 GeV K-+C	Only VTX2	0.95M	0.19M
6000	158 GeV p+Pb	158 GeV field	9.40M	0.93M
4000 2000	Krypton VTX1		4.26M	
0 27/09 04/10 time	Krypton GTPC		1.43M	
	Krypton LMPD		1.59M	

Low momentum particles in h+A collisions

- Early emulsion experiments \rightarrow number of "heavy tracks" ($\beta < 0.7$) is correlated to the number of hadron-nucleon collisions inside the nucleus
- Black tracks ($\beta < 0.3$)
 - isotropic angular distribution
 - associated with the last stage, the evaporation of the final nucleus
 - number Nb measures the nuclear excitation energy
- Grey particles $(0.3 < \beta < 0.7)$
 - angular distribution forward peaked
 - originate from the intranuclear cascade

Low momentum particles in h+A collisions

- Angular distributions of grey protons
 - significant dependence on A (the target mass number), stronger forward-peaked for lighter targets than for heavier ones
 - shape and height of the angular distributions do not depend on the incoming energy
 - at fixed A the dependence on the projectile is only weak

The number of slow particles measures the centrality or peripherality of a hadron-nucleus collision.

LMPD - *Physics* objectives

 Centrality of h+A collision is correlated to the number of slow ("gray") nucleons (produced by the "breakup" of the nucleus)

LMPD \rightarrow identification and energy measurement of low momentum particles in p+A collisions \rightarrow *Centrality Detector*

LMPD - Operation principle

- TPC, intervals in particle range defined by absorber layers
- Simultaneous measurement of dE/dx and range: energy and identification

Low Momentum Particle Detector

Readout chamber (MWPC) Cathode plane

Absorber layers

Low Momentum Particle Detector

Tracking performance

- Independent track reconstruction inside wedges
- Main vertex (target) visible after tracking

Calibration of LMPD

- Krypton calibration
 - → Relative gain calibration of pads (3D cluster finding, 3 iteration)
 - → For absolute gain calibration:
 - Different HV settings
 - Gradually increasing gain towards outer pad-rows
- **Drift velocity** calibration, correction for **tracks direction**, etc. in progress

Krypton spectra – before calibration

Krypton spectra – after calibration

200

Krypton calibration: Position of last peak (41.6keV), before calibration

Krypton calibration: Position of last peak (41.6keV), after calibration

Energy deposit distribution for particles stopped in 3rd absorber

Before Kr calibration

After Kr calibration

Proton identification with LMPD

Proton identification with LMPD

Energy deposit distributions After Kr calibration, with vertex (and direction) cuts

Summary

- Low Momentum Particle Detector (LMPD) at NA61
 - TPC with absorber layers \rightarrow range and dE/dx
 - Identification and energy of slow particles
- p+A collisions → centrality is correlated to the number of grey protons
- LMPD ~ Centrality Detector in the p+Pb run at NA61
- Calibration in progress
- Proton peak is visible

Thank you for your attention!

Backup

Data taking with LMPD

2011	Number of events	2012	Number of events
Pb, 0.5mm	2 442.5 k	Kr calibration	1 593.1 k
Pb, 0.5mm (rotated)	617.5 k	Pb, 1mm	8 196.4 k (Sept.)
C, 2mm	547.5 k	Target Out	830.6 k (Sept.)
Al, 1mm	621.9 k		
Target Out	263.6 k		

Cluster distributions

- Horizontal vertical coordinates of all clusters
- Top and bottom of chamber visible
- Drift velocity:
 ≈ 0.89 cm/µs

Number of Clusters in 1 event

Position resolution

- Position resolution in horizontal direction ~ 1-2 mm
- Position resolution is vertical direction ~ 1timebin \approx 1.8mm

Tracking performance – direction of tracks

Number of tracks per events (2011 data)

