The TOTEM Experiment: Results and Perspectives

ZIMÁNYI SCHOOL 2012 Budapest, 3 December

Mario Deile on behalf of the TOTEM Collaboration

Experimental Setup @ IP5

Roman Pots: measure elastic \& diffractive protons close to outgoing beam

Inelastic Telescopes T1, T2

Roman Pots

Roman Pot = movable box inside the beam pipe, housing silicon detectors.

Detectors can approach the beam centre to $<1 \mathrm{~mm}$.

Overview

- Charged Particle Pseudorapidity Density dN / d η
- pp Elastic Scattering (7 TeV, 8 TeV)
- Total pp Cross-Section (7 TeV, 8 TeV)
- Coulomb-Nuclear Interference (CNI), ρ Parameter
- Outlook: Diffractive Physics Analyses Future Runs

Charged Particle Pseudorapidity Density dN / d η

Analyses in progress:

- T1 measurement at $7 \mathrm{TeV}(3.1<|\eta|<4.7)$
- NEW: combined analysis CMS + TOTEM ($0<|\boldsymbol{\eta}|<6.5$) on low-pileup run of $1^{\text {st }}$ May 2012 (8 TeV): common trigger (T2, bunch crossings), both experiments read out
- NEW: parasitical collision at $\beta^{*}=90 \mathrm{~m}$ (7 July 2012) \rightarrow vertex at $\sim 11 \mathrm{~m} \rightarrow$ shifted η acceptance:

pp Elastic Scattering 7 TeV 8 TeV

"Measurement of proton-proton elastic scattering and total cross-section at $\sqrt{ }=7 \mathrm{TeV}$ " [CERN-PH-EP-2012-239]

Elastic Scattering at 7 TeV: Data Collection

Several data sets at different conditions to measure wide range and very low |t|

Set	$\beta^{*}(\mathrm{~m})$	RP approach	$\mathcal{L}_{\text {int }}$ $\left(\mu \mathrm{b}^{-1}\right)$	t range $\left(\mathrm{GeV}^{2}\right)$	Elastic events
1	90	$4.8-6.5 \sigma$	83	$7 \cdot 10^{-3}-0.5$	1 M
2	90	10σ	1.7	$0.02-0.4$	14 k
3	3.5	7σ	0.07	$0.36-3$	66 k
4	3.5	18σ	2.3	$2-3.5$	10 k

Proton Transport and Reconstruction via Beam Optics

$\left(x^{*}, y^{*}\right): \quad$ vertex position
$\left(\theta_{\mathrm{x}}{ }^{*}, \theta_{\mathrm{y}}{ }^{*}\right)$: emission angle: $\mathrm{t} \approx-\mathrm{p}^{2}\left(\theta_{\mathrm{x}}{ }^{* 2}+\theta_{\mathrm{y}}{ }^{* 2}\right)$
$\xi=\Delta \mathrm{p} / \mathrm{p}:$ momentum loss (elastic: $\xi=0$)

$$
\begin{aligned}
& \text { Measured } \\
& \text { in RP }
\end{aligned}\left(\begin{array}{c}
x \\
\Theta_{x} \\
y \\
\Theta_{y} \\
\Delta p / p
\end{array}\right)_{\mathbf{R P}}=\left(\begin{array}{ccccc}
v_{x} & L_{x} & 0 & 0 & D_{x} \\
v_{x}^{\prime} & L_{x}^{\prime} & 0 & 0 & D_{x}^{\prime} \\
0 & 0 & v_{y} & L_{y} & 0 \\
0 & 0 & v_{y}^{\prime} & L_{y}^{\prime} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x^{*} \\
\Theta_{x}^{*} \\
y^{*} \\
\Theta_{y}^{*} \\
\Delta p / p
\end{array}\right)_{\mathbf{I P 5}} \text { Reconstructed }
$$

Reconstruction of scattering angles $\Theta_{\mathrm{x}}{ }^{*}$ and $\Theta_{\mathrm{y}}{ }^{*}$:
Optics with $\beta^{*}=90 \mathrm{~m}$:

$$
\mathrm{L}_{\mathrm{y}}=263 \mathrm{~m}, \mathrm{v}_{\mathrm{y}} \approx 0 \quad \rightarrow \text { Reconstruct via track positions }
$$

$\mathrm{L}_{\mathrm{x}} \approx 0, \quad \mathrm{v}_{\mathrm{x}}=-1.9 \quad \rightarrow$ Use derivative (reconstruct via local track angles):

$$
\begin{aligned}
& \Theta_{y}^{*}=\frac{y}{L_{y}} \\
& \Theta_{x}^{*}=\frac{1}{\frac{d L_{x}}{d s}}\left(\Theta_{x}-\frac{d v_{x}}{d s} \cdot x^{*}\right)
\end{aligned}
$$

Excellent optics understanding (transfer matrix elements) needed.
See talk by F. Nemes (later today).

Beam-Based Roman Pot Alignment (Scraping)

When both top and bottom pots are touching the beam edge:

- they are at the same number of sigmas from the beam centre as the collimator
- the beam centre is exactly in the middle between top and bottom pot
\rightarrow Alignment of the RP windows relative to the beam ($\sim 20 \mu \mathrm{~m}$)

Software Alignment

Track-Based Alignment

Alignment Exploiting Symmetries of Hit Profiles

Map of all track intercepts after elastic selection

Fine vertical alignment: about $20 \mu \mathrm{~m}$ precision
\rightarrow Fine horizontal alignment: precision better than $10 \mu \mathrm{~m}$

Elastic pp Scattering: Event Topology and Hit Maps

Two diagonals analysed independently

Hit Maps of a single diagonal (left-right coincidences)

7×10^{10} protons per bunch
Inelastic pile-up ~ $0.8 \mathrm{ev} . / \mathrm{bx}$

1.5×10^{10} protons per bunch
Inelastic pile-up ~ 0.005 ev . / bx
$\beta^{*}=90 \mathrm{~m}$
$\mathrm{RP} @ 5 \sigma$

6×10^{10} protons per bunch
Inelastic pile-up ~ $0.03 \mathrm{ev} . / \mathrm{bx}$

Elastic Tagging

Example: elastic collinearity : Scattering angle on one side versus the opposite side

Collinearity in y

Collinearity in x

Width of correlation band in agreement with beam divergence ($\sim 2.4 \mu \mathrm{rad}$)

Analysis Overview I

Background subtraction

Acceptance correction

Analysis Overview II

Resolution unfolding

Efficiency (\rightarrow normalisation)

Trigger Efficiency (from zero-bias data stream)
> 99.8\% (68\% CL)
DAQ Efficiency
$(98.142 \pm 0.001) \%$
Reconstruction Efficiency

- intrinsic detector inefficiency:
$1.5-3 \% /$ pot
- elastic proton lost due to interaction:
1.5\% / pot
- event lost due to overlap with beam halo, depends on RP position
\rightarrow advantage from 3 data sets, 2 diagonals

Elastic pp Scattering at 7 TeV: Differential Cross-Section

Integrated elastic cross-section: $25.4 \pm 1.0^{\text {lumi }} \pm 0.3^{\text {syst }} \pm 0.03^{\text {stat }} \mathrm{mb}$ (90% measured) $24.8 \pm 1.0^{\text {lumi }} \pm 0.2^{\text {syst }} \pm 0.2^{\text {stat }} \quad \mathrm{mb}(50 \%$ measured $)$

7 TeV: Elastic Scattering at low |t|: Systematics

Individual contributions:
analysis t-dependent:

- misalignments
- optics imperfections
- energy offset
- acceptance correction
- unsmearing correction
analysis normalization:
- event tagging
- background subtraction
- detector efficiency
- reconstruction efficiency
- trigger efficiency
- "pile-up" correction

Luminosity from CMS ($\pm 4 \%$)

Elastic scattering - from ISR to Tevatron

Diffractive minimum: analogous to Fraunhofer diffraction:

- exponential slope B at low |t| increases
- minimum moves to lower $|t|$ with increasing s \rightarrow interaction region grows (as also seen from $\sigma_{\text {tot }}$)
- depth of minimum changes
\rightarrow shape of proton profile changes
- depth of minimum differs between pp, p^{-p}
\rightarrow different mix of processes

Elastic Scattering at 8 TeV

July 2012: runs at $\beta^{*}=\mathbf{9 0} \mathbf{m}$

dataset	date	bunches	$R P s$	$\|t\|_{\min }\left(\mathrm{GeV}^{2}\right)$	$\mathcal{L}\left(\mathrm{mb}^{-1}\right)$
1	7 July, 1st fill	1	3σ	$4 \cdot 10^{-3}$	-
2	7 July, 2nd fill	1	6σ	$7 \cdot 10^{-3}$	≈ 40
$3 a$	$12-13$ July	1	9.5σ	$15 \cdot 10^{-3}$	≈ 30
$3 b$	$12-13$ July	2 or 3	9.5σ	$15 \cdot 10^{-3}$	≈ 820

Elastic Scattering at 8 TeV

Unnormalised t-distributions

Energy dependence of the exponential slope B

Ongoing Elastic Analyses

Data already available and being analysed:

7 TeV:
$\beta^{*}=3.5 \mathrm{~m}$: Elastic scattering extended to larger $|\mathrm{t}|$: up to $3.5 \mathrm{GeV}^{2}$

8 TeV:

$\beta^{*}=90 \mathrm{~m}$: July 2012: Elastic scattering for $7 \times 10^{-3} \mathrm{GeV}^{2}<|\mathrm{t}|<\sim 1 \mathrm{GeV}^{2}$ (low $|t|$ part done for total cross-section, $\mathrm{d} \sigma / \mathrm{dt}$ not yet published)
$\beta^{*}=1 \mathrm{~km}$: October 2012: Elastic scattering for $6 \times 10^{-4} \mathrm{GeV}^{2}<|\mathrm{t}|<0.2 \mathrm{GeV}^{2}$

Total pp Cross-Section Measurements 7 TeV 8 TeV

Measurement of proton-proton elastic scattering and total cross-section at $\sqrt{s}=7 \mathrm{TeV}$ [CERN-PH-EP-2012-239]

Measurement of proton-proton inelastic scattering cross-section at $\sqrt{ } \mathrm{s}=7 \mathrm{TeV}$ [CERN-PH-EP-2012-352]

Luminosity-independent measurements of total, elastic and inelastic cross-sections at $V_{s}=7 \mathrm{TeV}$ [CERN-PH-EP-2012-353]

A luminosity-independent measurement of the proton-proton total cross-section at $\sqrt{ } \mathrm{s}=8 \mathrm{TeV}$ [CERN-PH-EP-2012-354]

3 Ways to the Total Cross-Section

7 TeV
elastic observables only:

$$
\sigma_{\text {tot }}^{2}=\left.\frac{16 \pi}{1+\varrho^{2}} \frac{1}{\mathcal{L}} \frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{~d} t}\right|_{0} \quad(\rho=0.14 \text { [COMPETE] })
$$

$$
\text { June } 2011 \text { (EPL96): } \sigma_{\text {tot }}=(98.3 \pm 2.8) \mathrm{mb}
$$

$$
\text { Oct. } 2011 \text { (PH pre.): } \sigma_{\text {tot }}=(98.6 \pm 2.2) \mathrm{mb}
$$

different bunch intensities !
@ independent:

$$
\begin{aligned}
\sigma_{\text {tot }} & =\frac{1}{\mathcal{L}}\left(N_{\mathrm{el}}+N_{\text {inel }}\right) \\
\sigma_{\text {tot }} & =(99.1 \pm 4.3) \mathrm{mb}
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{\text {tot }}=\frac{16 \pi}{1+\varrho^{2}} \frac{\mathrm{~d} N_{\mathrm{el}} /\left.\mathrm{d} t\right|_{0}}{N_{\mathrm{el}}+N_{\text {inel }}} \\
& \sigma_{\mathrm{tot}}=(98.0 \pm 2.5) \mathrm{mb}
\end{aligned}
$$

Excellent agreement between cross-section measurements at 7 TeV using

- runs with different bunch intensities,
- different methods.

Inelastic Cross-Section Visible in T2

Corrections to the T2 visible events

- Trigger Inefficiency:
$2.3 \pm 0.7 \%$
(measured from zero bias data with respect to track multiplicity)
- Track reconstruction efficiency:
$1.0 \pm 0.5 \%$
(based on MC tuned with data)
- Beam-gas background: $0.6 \pm 0.4 \%$ (measured with non colliding bunch data)
- Pile-up ($\mu=0.03$):
$1.5 \pm 0.4 \%$
(contribution measured from zero bias data)
$\sigma_{\text {inelastic, } \mathrm{T} 2}$ visible $=69.7 \pm 0.1$ (stat) ± 0.7 (syst) ± 2.8 (lumi) mb

Corrected Inelastic Cross-Section

$$
\boldsymbol{\sigma}_{\text {inelastic, T2 visible }} \quad \longleftrightarrow \sigma_{\text {inelastic }}
$$

Missing inelastic cross-section

- Events visible in T1 but not in T2: (estimated from zero bias data)

$$
1.6 \pm 0.4 \%
$$

- Fluctuation rapidity gap covering T2 :
$0.35 \pm 0.15 \%$
(estimated from T1 gap probability transferred to T2)

- Central Diffraction: T1 \& T2 empty :
$0.0 \pm 0.35 \%$ (based on MC)

- Low Mass Diffraction :
(Several models studied, correction based on QGSJET-II-3)

Low-Mass Diffraction

Correction based on QGSJET-II-3
Correction for the low mass single diffractive cross-section: $\quad \sigma_{\mathrm{Mx}}<3.4 \mathrm{GeV}=3.2 \pm 1.6 \mathrm{mb}$

$$
\sigma_{\text {inelastic }}=73.7 \pm 0.1^{\text {(stat) }} \pm 1.7^{\text {(syst) }} \pm 2.9^{(\text {lumi) }} \mathrm{mb}
$$

Estimate of the Low-Mass Diffractive Cross-Section from the Data

7 TeV

Use the total cross-section determined from elastic observables, \mathcal{L} and ρ (via the Optical Theorem)

$$
\sigma_{\text {tot }}^{2}=\left.\frac{16 \pi}{1+\varrho^{2}} \frac{1}{\mathcal{L}} \frac{\mathrm{~d} N_{\mathrm{el}}}{\mathrm{~d} t}\right|_{0} \quad \Rightarrow \quad \sigma_{\text {inel }}=\sigma_{\text {tot }}-\sigma_{\mathrm{el}}=73.15 \pm 1.26 \mathrm{mb}
$$

and the measured inelastic cross-section for $|\eta|<6.5$ (T1, T2)

$$
\sigma_{\text {inel, },|\eta|<6.5}=70.53 \pm 2.93 \mathrm{mb}
$$

to obtain the low-mass diffractive cross-section $(|\eta|>6.5$ or $\mathrm{M}<3.4 \mathrm{GeV})$:

$$
\sigma_{\text {inel, },|\eta|>6.5}=\sigma_{\text {inel }}-\sigma_{\text {inel, },|n|<6.5}=2.62 \pm 2.17 \mathrm{mb} \quad[\mathrm{MC}: 3.2 \mathrm{mb}]
$$

or

$$
\sigma_{\text {inel, },|\eta|>6.5}<6.31 \mathrm{mb} \quad(95 \% \mathrm{CL})
$$

pp Cross-Section Measurements

Absolute Luminosity Calibration

$$
\mathcal{L}=\frac{\left(1+\rho^{2}\right)}{16 \pi} \frac{\left(N_{e l}+N_{\text {inel }}\right)^{2}}{\left(d N_{e l} / d t\right)_{t=0}}
$$

7 TeV

$$
\begin{array}{lll}
\text { June 2011: } & \mathcal{L}_{\text {int }}=(1.65 \pm 0.07) \mu \mathrm{b}^{-1} & {\left[\text { CMS: }(1.65 \pm 0.07) \mu \mathrm{b}^{-1}\right]} \\
\text { October 2011: } \mathcal{L}_{\text {int }}=(83.7 \pm 3.2) \mu \mathrm{b}^{-1} & {\left[\text { CMS: }(82.0 \pm 3.3) \mu \mathrm{b}^{-1}\right]}
\end{array}
$$

Excellent agreement with CMS luminosity measurement.

Absolute luminosity calibration for T2

Elastic to Total Cross-Section Ratio

$$
\begin{array}{ccc}
\frac{\sigma_{e l}}{\sigma_{\text {tot }}}=\frac{N_{e l}}{N_{e l}+N_{\text {inel }}}= & 0.257 \pm 0.005 & \mathbf{8 ~ T e V} \\
& 0.266 \pm 0.006
\end{array}
$$

independent of luminosity and ρ

$>\sigma_{\mathrm{el}} / \sigma_{\text {tot }}$ increases with energy
\geqslant proton grows / becomes "blacker"

Elastic Scattering in the Coulomb-Nuclear Interference Region

Measurement of the ρ Parameter

A First, Very Crude ρ Estimate at 7 TeV

$$
\rho=\frac{\operatorname{Re} T(t=0)}{\operatorname{Im} T(t=0)} \quad \text { where } T(t=0)=\text { forward elastic scattering amplitude }
$$

From optical theorem:

$$
\rho^{2}=16 \pi \mathcal{L}_{\text {int }} \frac{\left.\frac{\mathrm{d} N_{\mathrm{el}}}{\mathrm{~d} t}\right|_{t=0}}{\left(N_{\mathrm{el}}+N_{\mathrm{inel}}\right)^{2}}-1=0.009 \pm 0.056
$$

$\rho<0.32 \quad$ (95\% CL),
or, using Bayes’ approach (with uniform prior $|\rho|$ distribution):
$|\rho|=0.145 \pm 0.091 \quad$ [COMPETE extrapolation: $\rho=0.141 \pm 0.007]$

Not so exciting, but ...
ρ Measurement: Elastic Scattering at Low $|\mathrm{t}|$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\text { elastic pp scattering at } 14 \mathrm{TeV} \\
\text { (BSW model) }
\end{array} \\
\text { Total (Coulomb \& nuclear) } \\
\text { Coulomb scattering dominant }
\end{array} \\
& \text { Coulomb-Nuclear interference }
\end{aligned}
$$

Measurement of ρ by studying the Coulomb - Nuclear interference region down to

$$
|t| \sim 6 \times 10^{-4} \mathrm{GeV}^{2}
$$

The Run at $\beta^{*}=1 \mathrm{~km}$

Objective:

Measure pp elastic scattering at very small momentum transfers (CNI region: $|t| \sim 6 \times 10^{-4} \mathrm{GeV}^{2}$)
\rightarrow special optics optimising acceptance for small scattering angles
\rightarrow Roman Pots very close to the beam (3 nominal beam sigmas)

Difficulty: intense beam halo background

Strategy:

Beams with 3 bunches of $\sim 10^{11} \mathrm{p}$ (2 colliding, 1 non-colliding)
Roman Pot beam-based alignment \rightarrow beam cleaning \rightarrow data taking

Beam Cleaning with Primary Collimators (TCPs)

1. Scrape the beam with
TCP at 2σ
TCP

2. Retract TCP from 2σ
 to $2.5 \sigma \rightarrow$ gap of 0.5σ

 RP at 3σ is protected by the gap

3. Gap refills within $\sim 1 \mathrm{~h}$

Scatter products from TCP edge hit the RP

Data Taking Periods as Seen by T2 and Roman Pots

T2 Trigger
(sees 70 mb inelastic
cross-section)
\rightarrow luminosity candle

Roman Pot
Double Arm Trigger
(Sector 45 AND Sector 56)

Total: 6.75 h in 6 periods int. lumi.: $27 \mu^{-1}$ 400k elastic events

The Run at $\beta^{*}=1 \mathrm{~km}$: First Look at the Data

Raw correlation between the scattering angles of the 2 protons

Preliminary t-distribution on a subsample, without corrections (acceptance etc.)

... to be continued soon.

Ongoing Analyses of Diffractive Processes

Common Runs with CMS

Diffractive Analyses Ongoing

Based on $\beta^{*}=90 \mathrm{~m}(7 \mathrm{TeV})$ run in Oct. 2011 (RP @ 4.8 $\mathbf{\sigma}$ - 6.5б):

- Central Diffraction $\left(\mathrm{d}^{2} \sigma_{\text {DPE }} / \mathrm{dt}_{1} \mathrm{dt}_{2}, \sigma_{\text {DPE }}\right)$

- Single Diffraction $\left(\mathrm{d} \sigma_{\mathrm{SD}} / \mathrm{dt}, \mathrm{d} \sigma_{\mathrm{SD}} / \mathrm{d} \xi, \sigma_{\mathrm{SD}}\right)$

- Double Diffraction

Select diff. masses $3.4 \mathrm{GeV}<\mathrm{M}<10 \mathrm{GeV}$ requiring tracks in both T2s, veto on T1s

\rightarrow Extend studies over full η range with CMS (2012 data)

Joint Data Taking with CMS

Realisation of common running much earlier than ever anticipated

1. Hardware: electrical from RP220 to CMS \rightarrow trigger within CMS latency
2. Trigger: bi-directional level-1 exchange \rightarrow same events taken
3. Synchronisation: orbit number and bunch number in data streams
4. Offline:

- common repository for independently reconstructed data
- merging procedure \rightarrow common n-tuples

Hard Diffraction with CMS in 2012

July 2012: $\beta^{*}=90 \mathrm{~m}, ~ \sqrt{ } \mathrm{~s}=8 \mathrm{TeV}$:
mixed trigger:
CMS [dijet(20GeV) .or. di-muon .or. zero-bias] .or. TOTEM [T2 .or. RP double-arm]

Study dijets in central diffraction:

Compare ξ_{1}, ξ_{2} from RPs and from CMS :
kinematics of final state over-constrained

Analysis in progress

Requested a low-pileup run ($\mu \sim 30 \%$) at $\beta^{*}=0.6 \mathrm{~m}$ to increase statistics

Runs Still Planned for 2012 / 2013

- p-Pb runs with insertions of the RPs on the proton side
\rightarrow study diffractive/electromagnetic and quasi-elastic p-Pb scattering
$\rightarrow \mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \eta$
p-Pb test run in September with CMS was successful (T2 trigger given to CMS)
- Low-energy pp run $(\sqrt{s}=2.76 \mathrm{TeV})$ with insertions of the RPs if possible with $\beta^{*}=90 \mathrm{~m}$ optics
\rightarrow measure elastic scattering and total cross-section near Tevatron energy

After LS1: Low-|t| Elastic Scattering at 13 TeV

- To reach CNI region, push β^{*} to > 2000 m
- At 13 TeV : good t-resolution needs parallel-to-point focussing in both x and y (phase advance $\pi / 2$)

Backup

TOTEM

Track distribution for an inclusive trigger (global "OR")

$$
\beta^{*}=3.5 \mathrm{~m}
$$

$$
\xi=\Delta p / p
$$

Elastic Tagging

1. Low $|\xi|$ selection : $|\mathrm{x}|<3 \sigma_{\mathrm{x}} @ \mathrm{~L}_{\mathrm{x}}=0$

$$
x=L_{x} \Theta x+\xi D+v_{x} x^{*}
$$

2. Elastic collinearity :

Data outside the 3σ cuts used for background estimation

Proton Transport (Beam Optics)

($\mathrm{x}^{*}, \mathrm{y}^{*}$): vertex position
$\left(\theta_{\mathrm{x}}{ }^{*}, \theta_{\mathrm{y}}{ }^{*}\right)$: emission angle: $\mathrm{t} \approx-\mathrm{p}^{2}\left(\theta_{\mathrm{x}}{ }^{* 2}+\theta_{\mathrm{y}}{ }^{* 2}\right)$
$\xi=\Delta \mathrm{p} / \mathrm{p}$: momentum loss (diffraction)

$y_{\mathrm{det}}=L_{y} \theta_{y}^{*}+v_{y} y^{*}$
$\beta^{*}=90 \mathrm{~m}: \mathrm{L}_{\mathrm{y}}=263 \mathrm{~m}, \mathrm{v}_{\mathrm{y}} \approx 0$
$\beta^{*}=3.5 \mathrm{~m}: \mathrm{L}_{\mathrm{y}} \sim 20 \mathrm{~m}, \mathrm{v}_{\mathrm{y}}=4.3$
\rightarrow Reconstruct via track positions

$$
\begin{aligned}
& x_{\text {det }}=L_{x} \theta_{x}^{*}+v_{x} x^{*}+D \xi \text { Elastic: } \xi=0 \\
& \beta^{*}=90 \mathrm{~m}: \mathrm{L}_{\mathrm{x}} \approx 0, \mathrm{v}_{\mathrm{x}}=-1.9 \\
& \beta^{*}=3.5 \mathrm{~m}: \mathrm{L}_{\mathrm{x}} \approx 0, \mathrm{v}_{\mathrm{x}}=3.1 \\
& \rightarrow \text { Use derivative (reconstruct via local track angles): }
\end{aligned}
$$

$$
\frac{d x_{\mathrm{det}}}{d s}=\frac{d L_{x}}{d s} \theta_{x}^{*}+\frac{d v_{x}}{d s} x^{*}
$$

Beam width @ vertex Angular beam divergence Min. reachable $|t|$

$$
\begin{array}{cll}
\sigma_{x, y}^{*}=\sqrt{\frac{\varepsilon_{n} \beta^{*}}{\gamma}} & \sigma_{x, y}^{*}=\sqrt{\frac{\varepsilon_{n}}{\beta^{*} \gamma}} & \left|t_{\text {min }}\right|=\frac{n_{\sigma}^{2} p \varepsilon_{n} m_{p}}{\beta^{*}} \\
\hline \sigma_{x, y}^{*} \text { small } & \sigma\left(\theta_{x, y}{ }^{*}\right) \text { large } & \left|\mathrm{t}_{\text {min }}\right| \sim 0.3-1 \mathrm{GeV}^{2} \\
\sigma_{x, y}^{*} \text { 范 large } & \sigma\left(\theta_{x, y}^{*}\right) \text { small } & \left|\mathrm{t}_{\text {min }}\right| \sim 10^{-2} \mathrm{GeV}^{2} \\
\hline
\end{array}
$$

pA Minimum Bias Physics

Charged particle acceptance (together with CMS): $|\eta| \leq 6.5$

Trigger: one T2 track(?) $\mathrm{dN} / \mathrm{d} \eta_{\mathrm{pPb}}$ using T1 \& T2 (vs centrality from CMS)

Forward-backward multiplicity correlations?

Central-forward multiplicity correlations?

Pattern recognition at high multiplicity to be optimized

Energy flow \& small x: T1+HF, T2+Castor

Cross-sections

Test of dynamics:

. knockout: $\mathrm{p} \mathrm{Pb} \rightarrow \mathrm{p}+\mathrm{d}+(\mathrm{A}-2)^{*} \quad \xi^{\mathrm{p}}{ }_{\text {fragment }}=\left(1-(\mathrm{A} / \mathrm{Z})_{\text {fragment }} /(\mathrm{A} / \mathrm{Z})_{\mathrm{Pb}}\right)$ measure both p \& $d(=" p$ with $\Delta p / p=-0.21 ")+$ veto hadron activity. Need large t for p or significant $\Delta p / p$. Study $\Delta p / p$ \& t dependence.
. quasielastic: p Pb \rightarrow p Pb* dominates at large t measure xi \& t of p + only γ on opposite side (veto hadrons)

Diffraction \& γy

- very large Pomeron \& γ fluxes but nothing measured in RP on outgoing Pb side (rate problem?) p with signficant $\Delta \mathrm{p} / \mathrm{p}$ (or large t) + central object (jets, J/Ч, Y etc..)

[K. Oesterberg, pA @ LHC workshop, June 2012]

pA run scenarios at LHC

$P_{A}=Z \cdot P_{p}$

(both beams in same dipole \Rightarrow same B-field) $\mathrm{Z}=82, \mathrm{~A}=208$ for $\mathrm{Pb} \Rightarrow \mathrm{cm}$ frame boosted $\beta=0.98-0.975$

- $P_{p}>2.7 \mathrm{TeV}$ (RF unequal for injection+ramp, then matched)

	$\mathrm{p}-\mathrm{p}$	$\mathrm{Pb}-\mathrm{Pb}$	$\mathrm{p}-\mathrm{Pb}$
E / TeV	$0.45-7$	$287-574$	$(2.7-7,287-574)$
E_{N} / TeV	$0.45-7$	$1.38-2.76$	$(2.7-7,1.38-2.76)$
\sqrt{s} / TeV	$7-14$	$73.8-1148$	$48.9-126.8$
$\sqrt{s_{\mathrm{NN}}} / \mathrm{TeV}$	$7-14$	$0.355-5.52$	$3.39-8.79$
y_{CM}	0	0	-2.20
y_{NN}	0	0	+0.46

(soft interactions) (hard interactions

- Pb filling scheme (few-300 bunches, $\mathrm{N}_{\mathrm{p}}=\sim 10^{10}, \mathrm{~N}_{\mathrm{Pb}}=\sim 10^{8}$)
- Rates: $\mathcal{L}=10^{26}-10^{28} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, \sigma_{\text {inelastic }} \sim 2 \mathrm{~b} \Rightarrow 200 \mathrm{~Hz}-20 \mathrm{kHz}$

$$
\sqrt{s_{\mathrm{NN}}} \approx 2 P_{\mathrm{p}} \sqrt{\mathrm{Z}_{1} Z_{2} / A_{1} A_{2}} \quad \mathrm{y}_{\mathrm{NN}}=1 / 2 \log \left(\mathrm{Z}_{1} A_{2} / A_{1} Z_{2}\right)
$$

The Run at $\beta^{*}=1 \mathrm{~km}$: Overview

2 fills with 3 bunches of $\sim 10^{11} \mathrm{p}$ (2 colliding, 1 non-colliding)

All RPs aligned in <2 hours (record)

Joint Data Taking with CMS in 2012

May 2012: Iow pileup run: $\beta^{*}=0.6 \mathrm{~m}, \sqrt{ } \mathrm{~s}=8 \mathrm{TeV}, \mathrm{T} 1 \& T 2 \& C M S$ read out

Date	Trigger	Inelastic events		
May 1	T2 $\\|$ BX	$\sim 5 \mathrm{M}$	no RP	

$d N / d \eta$, correlations, underlying event

July 2012: $\beta^{*}=90 \mathrm{~m}, \sqrt{ } \mathrm{~s}=8 \mathrm{TeV}, \mathrm{RP}$ \& T 1 \& T 2 \& CMS read out

Date, Set	Trigger	Inelastic events	RP position		
July 7, DS 2	$\mathrm{T} 2\left\\|\mathrm{RP}_{2 \text { arms }}\right\\| \mathrm{BX}$	$\sim 2 \mathrm{M}$	6σ		
July 12-13, DS 3a	$\mathrm{T} 2\left\\|\mathrm{RP}_{2 \text { arms }}\right\\| \mathrm{BX}$	$\sim 10 \mathrm{M}$	$9.5 \sigma \mathrm{~V}, 11 \sigma \mathrm{H}$		
July 12-13, DS 3b	$\mathrm{T} 2\left\\|\mathrm{RP}_{2 \text { 2arms }}\right\\| \mathrm{CMS}$ $\left(\mathrm{CMS}=2\right.$ jets @ $\mathrm{P}^{\mathrm{T}}>20 \mathrm{GeV}$, $2 \mu, 2$ central e$/ \gamma)$	$\sim 3.5 \mathrm{M}$	$9.5 \sigma \mathrm{~V}, 11 \sigma \mathrm{H}$		

$\sigma_{\text {tot }}, \sigma_{\text {inel }}$ with CMS,
soft \& semi-hard diffraction, correlations

Analyses in progress:

- hard diffraction: p + dijets
- combined $\mathrm{dN}_{\mathrm{ch}} / \mathrm{d} \eta$ and multiplicity correlations
-requested a low-pileup run ($\mu \sim 30 \%$) with RPs at $\beta^{*}=0.6 \mathrm{~m}$
\rightarrow study hard central diffraction (e.g. di-jets)
with 2 leading protons defining Pomeron-Pomeron mass $\mathrm{M}^{2}=\xi_{1} \xi_{2} \mathrm{~s}$
(good ξ resolution at $\beta^{*}=0.6 \mathrm{~m} \rightarrow \sigma(\mathrm{M}) \sim 5 \mathrm{GeV}$)

$d N_{c h} / d \eta$ in T2: Analysis Highlights

Data sample:

events at low luminosity and low pile-up, triggered with $T 2(5.3<|\eta|<6.5)$

Selection:

at least one track reconstructed in T2

Primary particle definition:

charged particle with $t>0.3 \times 10^{-10} \mathrm{~s}, p_{T}>40 \mathrm{MeV} / \mathrm{c}$

Primary particle selection:

-primary/secondary discrimination, data-driven based on reconstructed track parameters ($\mathrm{Z}_{\text {Impact }}$)

Primary track reconstruction efficiency:

- evaluated as a function of the track η and multiplicity
- efficiency of 80%
- fraction of primary tracks within the cuts of $75 \%-90 \%$ (η dependent)

Un-folding of (η) resolution effects:

MC driven bin "migration" corrections

Inelastic Cross-Section Visible in T2

Inelastic events in T2: classification

tracks in both hemispheres

non-diffractive minimum bias
double diffraction
tracks in a single hemisphere

mainly single diffraction

$$
M_{X}>3.4 \mathrm{GeV} / \mathrm{c}^{2}
$$

Corrections to the T2 visible events

- Trigger Efficiency:
2.3 \%
(measured from zero bias data with respect to track multiplicity)
- Track reconstruction efficiency:1\%
(based on MC tuned with data)
- Beam-gas background:

$$
0.6 \%
$$

(measured with non colliding bunch data)

- Pile-up ($\mu=0.03$):

$$
1.5 \text { \% }
$$

(contribution measured from zero bias data)
$\sigma_{\text {inelastic, } \text {, } 2 \text { visible }}=69.7 \pm 0.1$ (stat) ± 0.7 (syst) ± 2.8 (lumi) mb

Comparison to some models

B		t^{-n}
($\mathrm{t}=-0.4$	$\mathrm{t}_{\text {DIP }}$	[1.5-2.5
$\mathrm{GeV}^{\mathbf{2}}$)		$\left.\mathrm{GeV}^{2}\right]$
20.2	0.60	5.0
23.3	0.51	7.0
22.0	0.54	8.4
25.3	0.48	10.4
20.1	0.72	4.2
23.6 ± 0.5	$\begin{gathered} 0.53 \pm \\ 0.01 \end{gathered}$	7.8 ± 0.3

None of the models really fits

