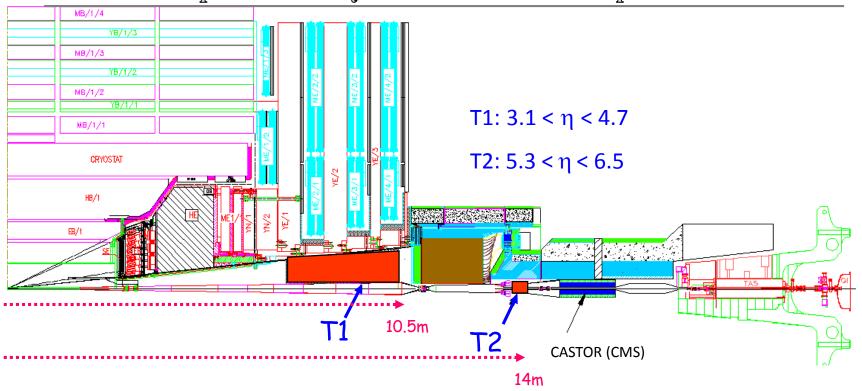


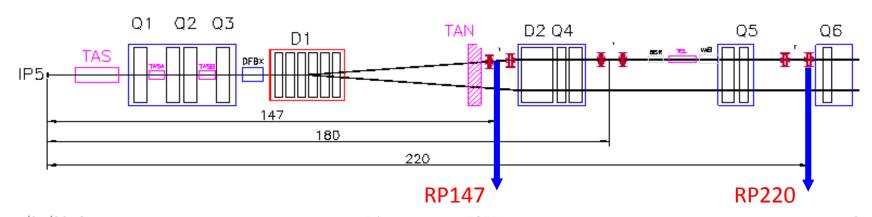
TOTEM luminosity independent cross section measurements Elastic cross sections LHC optics estimation

Frigyes Nemes

Eötvös University

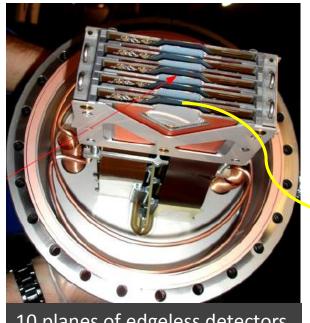
on behalf of the

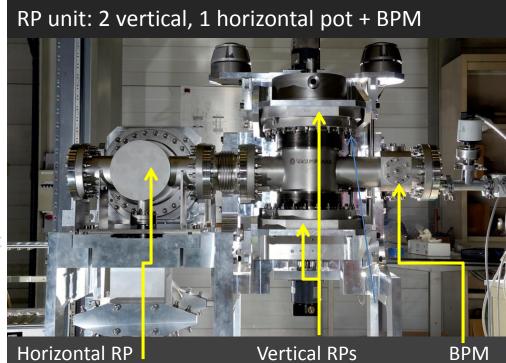

TOTEM collaboration

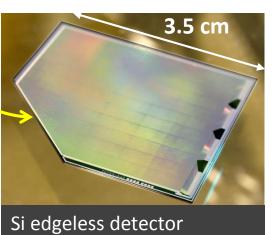

http://totem.web.cern.ch/Totem/

Low-x Workshop, Paphos 2012, 27 June – 1 July

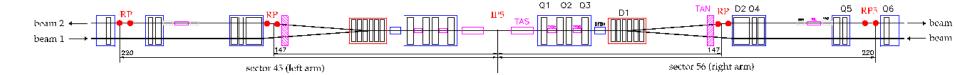
Experimental layout of the TOTEM experiment






RP stations

- 2 units at about 5 m distance
- Measurement of very small proton scattering angles (few µrad)
- Vertical and horizontal pots mounted as close as possible to the beam
- BPM fixed to the structure gives precise position relative to the beam
- Overlaping detectors: relative alignment (10 μm inside unit between 3 RPs)



LHC optics in brief

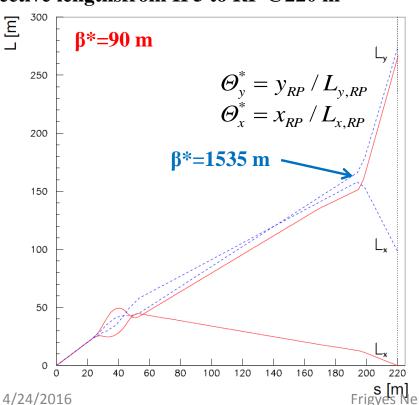
Proton position at a given RP (x, y) is a function of position (x*, y*) and angle (Θ_x^* , Θ_v^*) at IP5:

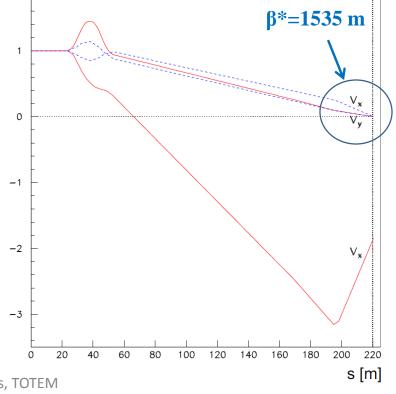
$$\begin{array}{c} \text{measured} \end{array} \left[\left(\begin{array}{c} x \\ \Theta_x \\ y \\ \Theta_y \\ \Delta p/p \end{array} \right)_{\text{RP}} = \left(\begin{array}{cccc} v_x & L_x & 0 & 0 & D_x \\ v_x' & L_x' & 0 & 0 & D_x' \\ 0 & 0 & v_y & L_y & 0 \\ 0 & 0 & v_y' & L_y' & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x^* \\ \Theta_x^* \\ y^* \\ \Theta_y^* \\ \Delta p/p \end{array} \right)_{\text{IP5}} - \text{reconstructed}$$

The effective length and magnification expressed with the phase advance

$$L(s) = \sqrt{\beta(s)\beta^*} \sin \Delta \mu(s) \qquad v(s) = \sqrt{\beta(s)\beta^{*-1}} \cos \Delta \mu(s) \qquad \Delta \mu(s) = \int_0^s \beta^{-1}(s')ds'$$

Beam size and divergence at IP5 and RP


$$\sigma(x) = \sqrt{\varepsilon \beta_x}$$
 describes the spread of primary vertex and beam size at RP $\sigma(\Theta) = \sqrt{\varepsilon/\beta_x}$ beam divergence @IP5 limits the angle measurement precision


= 1535 m is the target optics. Requires different injection optics. Properties:

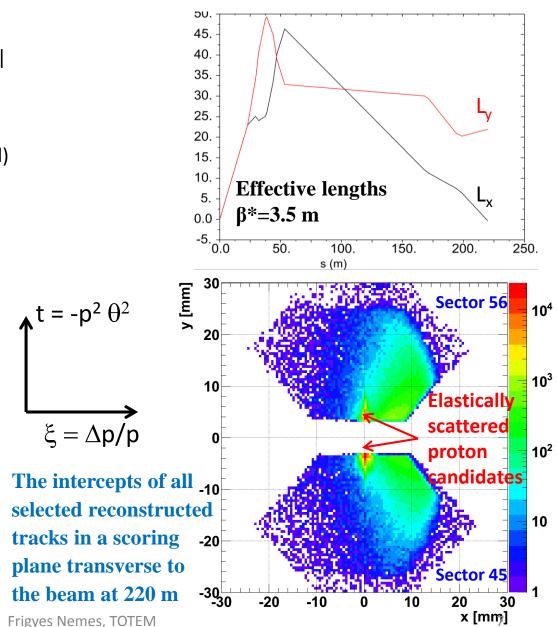
- beam divergence $\sigma_{e^*} \approx 0.3 \mu rad$, vertex size $\sigma_{ip} \approx 450 \mu m$
- $\Delta\mu_{x,y} = \pi/2 \rightarrow v_{x,y} = 0$. Parallel-to-point focusing **eliminates** the large vertex contribution
- the large (270 m) vertical effective length $L_{\rm v}$ pushes protons vertically into RP acceptance
- acceptance in momentum transfer, $|t| > 2 \cdot 10^{\text{--}3} \, \text{GeV}^2$, with 10 $\sigma_{\text{beam size@RP}}$

Effective lengthsfrom IP5 to RP @220 m

Magnification from IP5 to RP @220 m

LOW β *=3.5 m OPTICS

Objective:


to measure elastic scattering at high |t|

Properties of the optics:

- $\sigma_{IP} \approx 37 \ \mu m$ (magnification is not crucial)
- $L_x \approx 0$, $L_y = 22.4 \text{ m}$
- beam divergence $\sigma_{\Theta^*} \approx 17-18 \mu rad$

Data sources to improve our optics understanding:

- TIMBER database magnet currents
- FIDEL team conversion curves, implemented with LSA
- WISE field harmonics, magnet's displacements`

The effect of machine imperfections \(\beta *=3.5 m \)

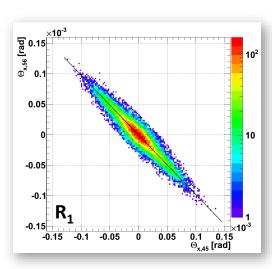
Machine imperfections:

- Strength conversion error, $\sigma(B)/B \approx 10^{-3}$
- Beam momentum offset, $\sigma(p)/p \approx 10^{-3}$
- Magnet rotations, $\sigma(\phi) \approx 1 \text{ mrad}$
- Beam harmonics, $\sigma(B)/B \approx 10^{-4}$
- Power converter errors, $\sigma(I)/I \approx 10^{-4}$
- Magnet positions Δx , $\Delta y \approx 100 \mu m$

Imperfections alter the optics!

Perturbed element	δL _{y,b1} /L _{y,b1} [%]
MQXA.1R5	0.98
MQXB.A2R5	-2.24
MQXB.B2R5	-2.42
MQXA.3R5	1.45
MQY.4R5.B1	-0.10
MQML.5R5.B1	0.05
Δρ/ρ	-2.19

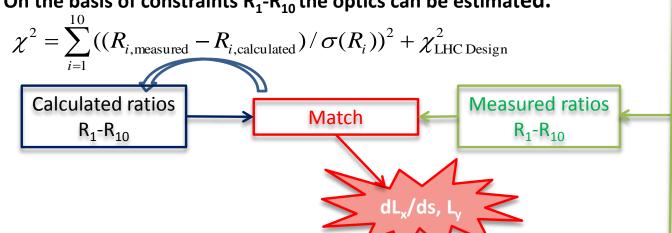
Constraints from proton tracks in the Roman Pots B*=3.5m


Optics imperfections can be determined from proton tracks *measured* in the Roman Pots. The method is based on:

- elastic events are easy to tag
- the elements of the transport matrix are mutually correlated

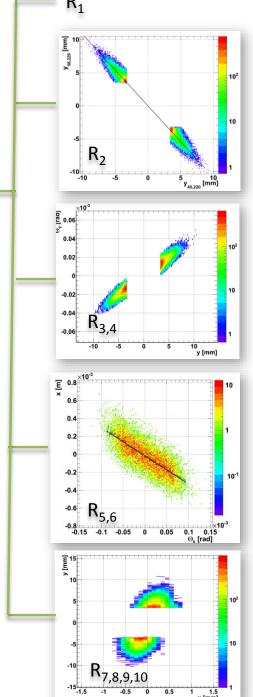
$$\Theta_{y,b1}^* = \Theta_{y,b2}^*$$

$$\Theta_{x,b1}^* = \Theta_{x,b2}^*$$


$$R_{1} \equiv \frac{\Theta_{x,b1,RP}}{\Theta_{x,b2,RP}} \approx \frac{\frac{dL_{x,b1,RP}}{ds}}{\frac{dL_{x,b2,RP}}{ds}}$$

Matching the optics B*=3.5m

On the basis of constraints R₁-R₁₀ the optics can be estimated.

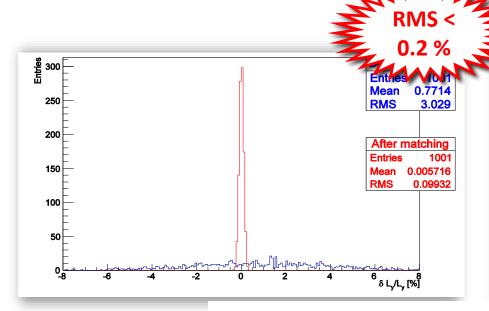


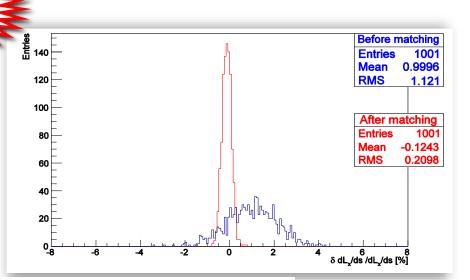
$$R_2 \equiv \frac{y_{b1,RP}}{y_{b2,RP}} \approx \frac{L_{y,b1,RP}}{L_{y,b2,RP}}$$

$$R_{2} \equiv \frac{y_{b1,RP}}{y_{b2,RP}} \approx \frac{L_{y,b1,RP}}{L_{y,b2,RP}} \qquad R_{3} \equiv \frac{\Theta_{y,b1,RP}}{y_{b1,RP}} \approx \frac{\frac{dL_{y,b1,RP}}{ds}}{L_{y,b1,RP}}$$

$$R_7 \equiv \frac{x_{b1,RP}}{y_{b1,RP}} \approx \frac{m_{14,b1,near_pots}}{L_{y,b1,near_pots}} \quad R_5 \equiv \frac{x_{b1,RP}}{\Theta_{x,b1,RP}} \approx \frac{L_{x,b1,RP}}{dL_{x,b1,RP}/ds}$$

$$R_5 \equiv \frac{x_{b1,RP}}{\Theta_{x,b1,RP}} \approx \frac{L_{x,b1,RP}}{dL_{x,b1,RP}/ds}$$

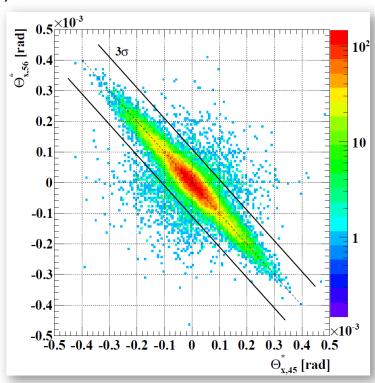

Monte-Carlo confirmation of the method (presented @IPAC 2012)


The Monte-Carlo study included the effect of:

- magnet strengths
- beam momenta
- displacements, rotations
- kickers, field harmonics
- elastic scattering Θ-distributions

Optical function	Before		Matched	
relative error	Mean [%]	RMS [%]	Mean [%]	RMS [%]
$\delta L_{y,b1}/L_{y,b1}$	0.77	3.0	5.7 · 10 ⁻³	9.9 · 10 ⁻²
$\delta (dL_{x,b1}/ds)/(dL_{x,b1}/ds)$	1.0	1.1	-1.2 · 10 ⁻¹	2.1 · 10 ⁻¹
$\delta L_{y,b2}/L_{y,b2}$	2.0	3.8	1.5 · 10 ⁻¹	9.5 · 10 ⁻²
$\delta (dL_{x,b2}/ds)/(dL_{x,b2}/ds)$	-1.14	1.2	-7.6 · 10 ⁻²	2.1 · 10 ⁻¹

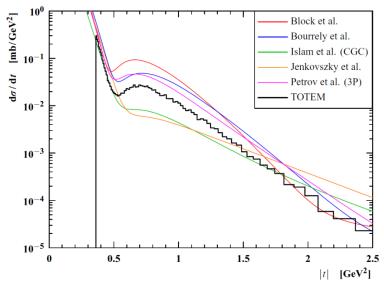
Conclusion: for β *=3.5m TOTEM can measure the transfer matrix between IP5 and RPs with a precision

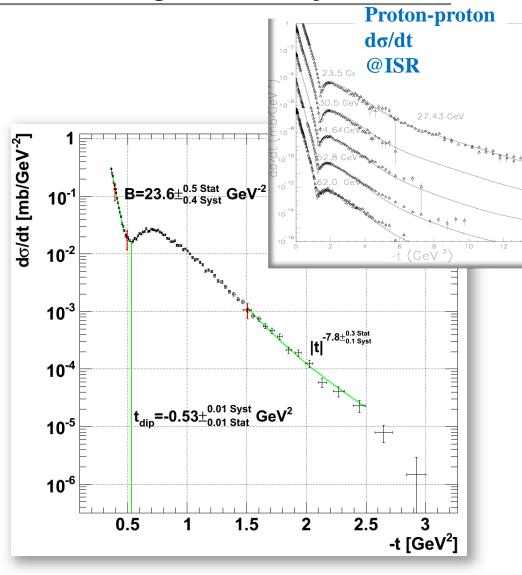


ELASTIC SCATTERING WITH β *=3.5 m

Results (the matched L_v and dL_x/ds are used for reconstruction):

- RP approaches the beam down to 7 $\sigma_{\text{beam size@RP}}$
- published in EPL **95** (2011) 41001
- $\xi \approx 0$

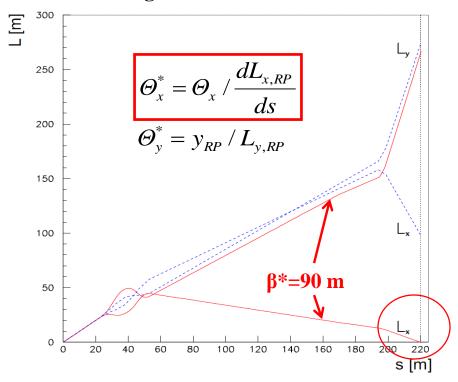

Collinearity Θ_v



Published in EPL 95 (2011) 41001:

- |t| range spans from 0.36 to 2.5 GeV²
- below $|t| = 0.47 \text{ GeV}^2$ exponential $e^{-B|t|}$ behavior
- dip moves to lower |t|, proton becomes "larger"
- 1.5 2.0 GeV² power low behavior |t|⁻ⁿ

The measured dσ/dt compared with predictions of several models

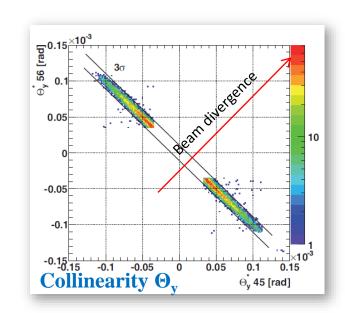


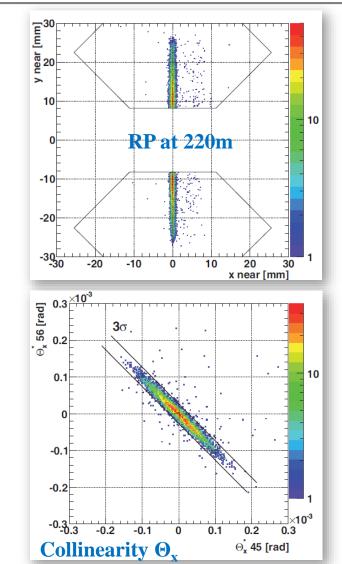
HIGH $\beta^* = 90$ m OPTICS AND RESULTS

β^* = 90m optics achievable using the standard LHC injection optics. Properties:

- $\sigma_{\Theta^*} = 2.5 \, \mu \text{rad}, \, L_x \approx 0, \, L_y \approx 260 \, \text{m}$
- vertex size σ_{IP} ≈ 212 μm
- Acceptance: $|t| > 3 \cdot 10^{-2} \, \text{GeV}^2$, RP distance from beam center 10 $\sigma_{\text{beam size@RP}}$
- parallel to point focusing only in vertical plane @RP220

Effective lengths from IP5 to RP @220 m





The properties of the measured data:

- divergence is reduced with respect to 3.5 m optics (from 17-18 μrad to 2.5 μrad)
- lower background compared to 3.5 m (< 0.1%)
- uncertainty of luminosity 4% (CMS)
- low intensity bunches and β*=90 m -> no pile-up from single diffraction

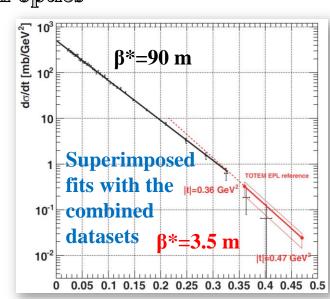
Intermediate \(\beta \cdot = 90 \) m optics: robustness

Objectives:

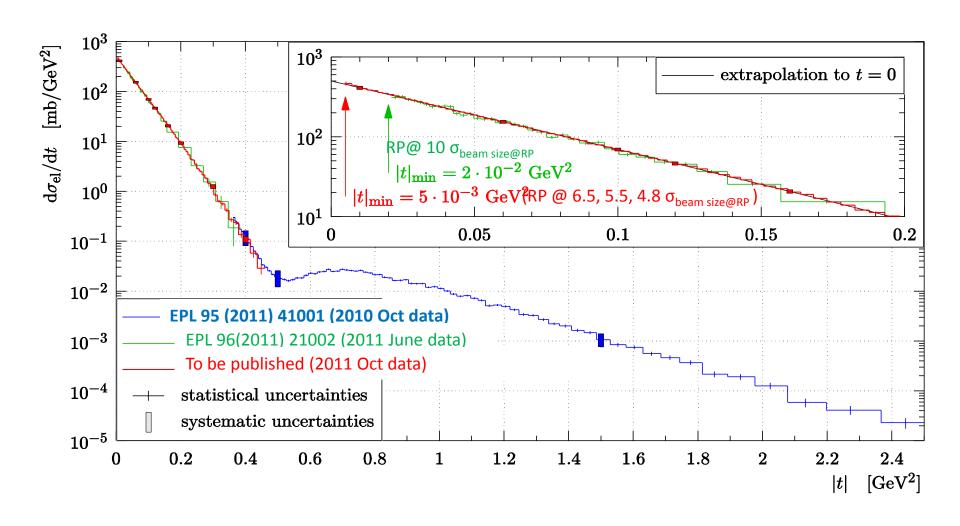
- First measurement of σ_{tot} elastic scattering in a wide |t| range
- inclusive studies of diffractive processes
- measurement of forward charged multiplicity

Sensitivity of the effective length L_{v} :

- 1 ‰ perturbations magnet strength, beam momenta
- Conclusion: not necessary to improve our understanding about β *=90 m optics


Perturbed element	δ _{Ly,b1} /L _{y,b1} [%]
MQXA.1R5	0.14
MQXB.A2R5	-0.23
MQXB.B2R5	-0.25
MQXA.3R5	0.20
MQY.4R5.B1	-0.01
MQML.5R5.B1	0.04
Δp/p	0.01

Obtained do/dt with \(\beta *=90 \) m optics


Published in EPL 96 (2011) 21002

Properties:

- |t| range of the new set is 0.02 0.33 GeV²
- B = $(20.1 \pm 0.2^{\text{stat}} \pm 0.3^{\text{syst}}) \text{ GeV}^{-2}$ confirms that B increases with \sqrt{s}
- excellent agreement between the two measurements with different optics

Total Cross-Section with 4 methods

- 1. Low luminosity (CMS) + Elastic $d\sigma/dt$ + Optical th. (EPL 96(2011) 21002)
 - depends on CMS luminosity for low-L bunches, elastic efficiencies and on ρ

$$\sigma_{tot}^2 = \frac{16\pi(\hbar c)^2}{1+\rho^2} \cdot \frac{d\sigma_{el}}{dt}\bigg|_{t=0}$$

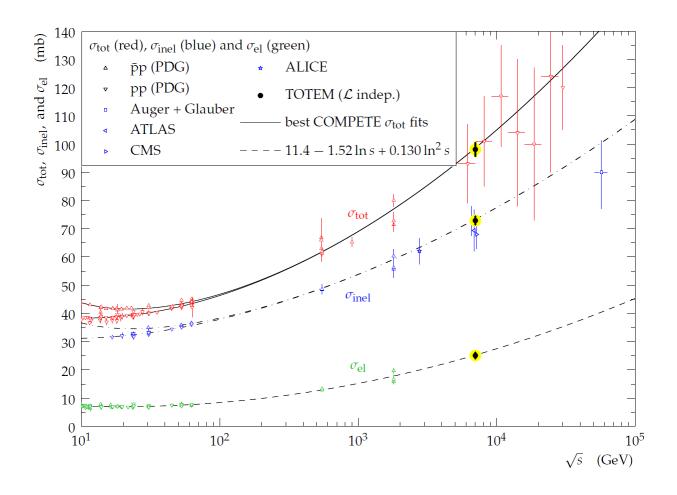
$$\sigma_{TOT} = 98.3 \pm 2.0 \text{ mb}$$

2. High luminosity (CMS) + Elastic + Optical theorem (to be published)

$$\sigma_{TOT} = 98.6 \pm 2.3 \text{ mb}$$

- 3. High luminosity (CMS) + Elastic + Inelastic (to be published)
 - minimizes dependence on elastic efficiencies and no dependence on p

$$\sigma_{tot} = \sigma_{el} + \sigma_{inel}$$


$$\sigma_{TOT} = 99.1 \pm 4.4 \text{ mb}$$

- 4. Elastic ratios + Inelastic ratios + Optical theorem (to be published)
 - Eliminates dependence on luminosity

$$\sigma_{tot} = \frac{16\pi(\hbar c)^2}{1+\rho^2} \cdot \frac{\frac{dN_{EL}}{dt}\Big|_{t=0}}{N_{EL} + N_{INFL}}$$

$$\sigma_{TOT} = 98.1 \pm 2.5 \text{ mb}$$

The result of the 4 methods on one plot:

Conclusions

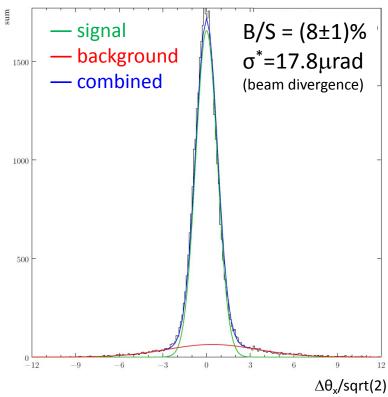
- TOTEM has measured the inelastic and elastic cross sections and the total cross section with the <u>luminosity independent</u> method at Vs=7 TeV
- Very soon these measurements will be repeated at Vs=8 TeV
- Measurement of elastic scattering at very low-t and determination of the ρ parameter will be in reach during the high β (β *= 500 m) run
- Several analyses on diffractive physics are going on, results are expected soon

Thank you for you attention !

Backup part

Luminosity calibration

TOTEM is able to determine the CMS luminosity:

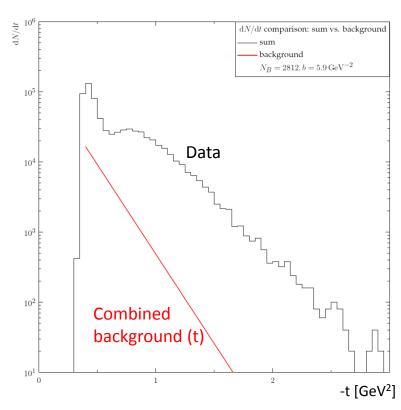

Elastic and inelastic rates are used

$$L = \frac{1 + \rho^2}{16\pi (\hbar c)^2} \cdot \frac{(N_{EL} + N_{INEL})^2}{dN_{EL} / dt|_{t=0}}$$

Obtained luminosity values

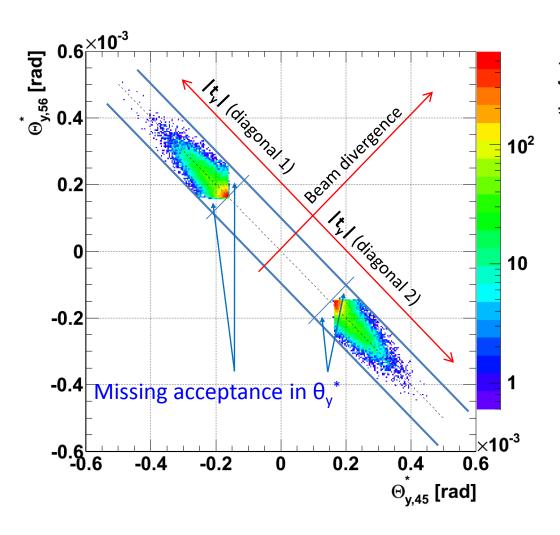
October data:
$$L_{CMS} = 82.8 \mu b^{-1} \pm 4\%$$
 $L_{TOTEM} = 84.2 \mu b^{-1} \pm 3.8\%$

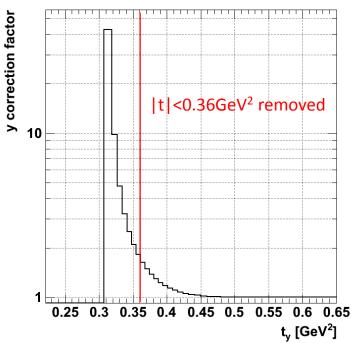
June data:
$$L_{CMS} = 1.65 \mu b^{-1} \pm 4\%$$
 $L_{TOTEM} = 1.655 \mu b^{-1} \pm 4.5\%$


Signal to background normalisation (also as a function of $\Delta\theta_v$)

$\sigma^* \rightarrow$ t-reconstruction resolution:

$$\frac{\sigma(t)}{t} = \frac{\sqrt{2}p\sigma^*}{\sqrt{t}} : 1 \text{GeV}^2 : 14\%$$


$$\frac{d^2(t)}{dt} = \frac{\sqrt{2}p\sigma^*}{\sqrt{t}} : 1 \text{GeV}^2 : 8.8\%$$


$$3 \text{GeV}^2 : 5.1\%$$

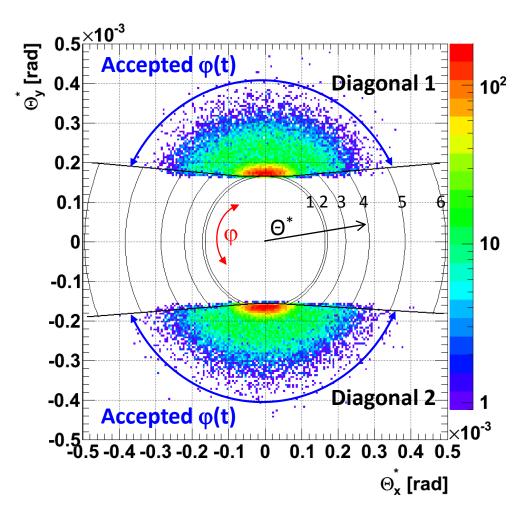
Signal vs. background (t)

|t|=0.4GeV²: B/S = (11±2)% |t|=0.5GeV²: B/S = (19±3)% |t|=1.5GeV²: B/S = (0.8±0.3)%

Correction error (t_v):

 $0.31 \text{ GeV}^2:30\%$

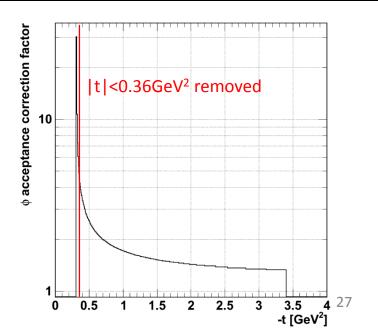
0.33 GeV²: 11%


0.35 GeV²: 2%

 $0.4 \text{ GeV}^2: 0.8\%$

 $0.5 \text{ GeV}^2: 0.1\%$

4/24/2016



Critical at low t-acceptance limit 4/24/2016

Total φ-acceptance correction

No.	t [GeV ²]	O* [rad]	Accepted φ (2 diag.) [°]	φ accept. correct. factor
1	0.33	1.65E-04	38.6	9.3±4.7%
2	0.36	1.71E-04	76.4	4.7±1.8%
3	0.60	2.21E-04	162.5	2.2±0.3%
4	1.00	2.86E-04	209.8	1.7±0.1%
5	1.80	3.83E-04	246.3	1.5
6	3.00	4.95E-04	269.0	1.3

