LHC optics estimation

Frigyes Nemes
Eötvös Loránd University
on behalf of the
\section*{TOTEM collaboration}
http://totem.web.cern.ch/Totem/

Zimányi Winter School
Budapest
2012, December 3.- 7.

Experimocntal leyout of the TOTTENI experimonemi

RP stations

- $\quad 2$ units at about 5 m distance
- Measurement of very small proton scattering angles (few μ rad)
- Vertical and horizontal pots mounted as close as possible to the beam
- BPM fixed to the structure gives precise position relative to the beam
- Overlapping detectors: relative alignment ($10 \mu \mathrm{~m}$ inside unit between 3 RPs)

10 planes of edgeless detectors

Si edgeless detector

1 Roman Pot

Proton position at a given RP (x, y) is a function of position $\left(x^{*}, y^{*}\right)$ and angle $\left(\Theta_{x}{ }^{*}, \Theta_{y}{ }^{*}\right)$ at IP5:

$$
\text { measured }\left[\left(\begin{array}{c}
x \\
\Theta_{x} \\
y \\
\Theta_{y} \\
\Delta p / p
\end{array}\right)_{\mathrm{RP}}=\left(\begin{array}{ccccc}
v_{x} & L_{x} & 0 & 0 & D_{x} \\
v_{x}^{\prime} & L_{x}^{\prime} & 0 & 0 & D_{x}^{\prime} \\
0 & 0 & v_{y} & L_{y} & 0 \\
0 & 0 & v_{y}^{\prime} & L_{y}^{\prime} & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
x^{*} \\
\Theta_{x}^{*} \\
y^{*} \\
\Theta_{y}^{*} \\
\Delta p / p
\end{array}\right)_{\mathrm{PP} 5}\right] \text { reconstructed }
$$

The effective length and magnification expressed with the phase advance

$$
L(s)=\sqrt{\beta(s) \beta^{*}} \sin \Delta \mu(s) \quad v(s)=\sqrt{\beta(s) \beta^{*-1}} \cos \Delta \mu(s) \quad \Delta \mu(s)=\int_{0}^{s} \beta^{-1}\left(s^{\prime}\right) d s^{\prime}
$$

Beam size and divergence at IP5 and RP
$\sigma(x)=\sqrt{\varepsilon \beta_{x}} \quad$ describes the spread of primary vertex and beam size at RP
$\sigma(\Theta)=\sqrt{\varepsilon / \beta_{x}}$ beam divergence @IP5 limits the angle measurement precision
$\beta^{*}=1535 \mathrm{~m}$ is the target optics. Requires different injection optics. Properties:

- beam divergence $\sigma_{\ominus^{*}} \approx 0.3 \mu \mathrm{rad}$, vertex size $\sigma_{\mathrm{IP}} \approx 450 \mu \mathrm{~m}$
- $\Delta \mu_{x, y}=\pi / 2 \rightarrow v_{x, y}=0$. Parallel-to-point focusing eliminates the large vertex contribution
- the large (270 m) vertical effective length L_{y} pushes protons vertically into RP acceptance
- acceptance in momentum transfer, $|\mathrm{t}|>2 \cdot 10^{-3} \mathrm{GeV}^{2}$, with $10 \sigma_{\text {beam size@RP }}$

Effective lengths from IP5 to RP @ 220 m

Magnification from IP5 to RP @ 220 m

LOW $\boldsymbol{\beta}^{*}=3.5 \mathrm{~m}$ OPTICS

Objective:

- to measure elastic scattering at high |t|

Properties of the optics:

- $\sigma_{\mathrm{IP}} \approx 37 \mu \mathrm{~m}$ (magnification is not crucial)
- $L_{x} \approx 0, L_{y}=22.4 \mathrm{~m}$
- beam divergence $\sigma_{\Theta^{*}} \approx 17-18 \mu \mathrm{rad}$

Data sources to improve our optics understanding:

- TIMBER database magnet currents
- FIDEL team conversion curves, implemented with LSA
- WISE field harmonics, magnet's displacements`

The intercepts of all selected reconstructed tracks in a scoring plane transverse to the beam at 220 m
Frigyes Nemes, TOTEM

Machine imperfections:

- Strength conversion error, $\sigma(B) / B \approx 10^{-3}$
- Beam momentum offset, $\sigma(\mathrm{p}) / \mathrm{p} \approx 10^{-3}$
- Magnet rotations, $\sigma(\phi) \approx 1 \mathrm{mrad}$
- Beam harmonics, $\sigma(\mathrm{B}) / \mathrm{B} \approx 10^{-4}$
- Power converter errors, $\sigma(\mathrm{I}) / \mathrm{I} \approx 10^{-4}$
- Magnet positions $\Delta x, \Delta y \approx 100 \mu \mathrm{~m}$ Imperfections alter the optics !

Perturbed element	$\delta L_{y, b 1} / L_{y, b 1}[\%]$
MQXA.1R5	0.98
MQXB.A2R5	-2.24
MQXB.B2R5	-2.42
MQXA.3R5	1.45
MQY.4R5.B1	-0.10
MQML.5R5.B1	0.05
$\Delta p / p$	-2.19

Comstiraints firom protom treacks im the Romma Pots $\mathbb{B}^{*}=3.5 \mathrm{~mm}$
Optics imperfections can be determined from proton tracks measured in the Roman Pots. The method is based on:

- elastic events are easy to tag
- the elements of the transport matrix are mutually correlated
- elastic scattering ensures that

$$
\begin{aligned}
\Theta_{y, b 1}^{*} & =\Theta_{y, b 2}^{*} \\
\Theta_{x, b 1}^{*} & =\Theta_{x, b 2}^{*}
\end{aligned}
$$

$$
\longrightarrow R_{1} \equiv \frac{\Theta_{x, b l, R P}}{\Theta_{x, b 2, R P}} \approx \frac{\frac{d L_{x, b l, R P}}{d s}}{\frac{d L_{x, b 2, R P}}{d s}}
$$

On the basis of constraints $R_{1}-R_{10}$ the optics can be estimated.

$$
\mathrm{R}_{2} \equiv \frac{\mathrm{y}_{\mathrm{b} 1, \mathrm{RP}}}{\mathrm{y}_{\mathrm{b} 2, \mathrm{RP}}} \approx \frac{\mathrm{~L}_{\mathrm{y}, \mathrm{~b} 1, \mathrm{RP}}}{\mathrm{~L}_{\mathrm{y}, \mathrm{~b}, \mathrm{RP}}}
$$

$$
\mathrm{R}_{3} \equiv \frac{\Theta_{\mathrm{y}, \mathrm{bl}, \mathrm{RP}}}{\mathrm{y}_{\mathrm{b} 1, \mathrm{RP}}} \approx \frac{\frac{\mathrm{dL}_{\mathrm{y}, \mathrm{bl} 1, \mathrm{RP}}}{\mathrm{ds}}}{\mathrm{~L}_{\mathrm{y}, \mathrm{~b} 1, \mathrm{RP}}}
$$

$$
\mathrm{R}_{7} \equiv \frac{\mathrm{x}_{\mathrm{b} 1, \mathrm{RP}}}{\mathrm{y}_{\mathrm{bl} 1, \mathrm{RP}}} \approx \frac{\mathrm{~m}_{14, \mathrm{~b} 1, \text { near_pots }}}{\mathrm{L}_{\mathrm{y}, \mathrm{~b} 1, \text { near_pots }}}
$$

$$
\mathrm{R}_{5} \equiv \frac{\mathrm{x}_{\mathrm{bl} 1, \mathrm{RP}}}{\Theta_{\mathrm{x}, \mathrm{~b} 1, \mathrm{RP}}} \approx \frac{\mathrm{~L}_{\mathrm{x}, \mathrm{~b} 1, \mathrm{RP}}}{\mathrm{dL}_{\mathrm{x}, \mathrm{~b} 1, \mathrm{RP}} / \mathrm{ds}}
$$

Momte-Carlo comfirmatiom off the method (preesented @ITPAC 2012)

The Monte-Carlo study included the effect of:

- magnet strengths
- beam momenta
- displacements, rotations
- kickers, field harmonics
- elastic scattering Θ-distributions

Optical function relative error	Before		Matched	
	Mean [\%]	$\begin{aligned} & \text { RMS } \\ & \text { [\%] } \end{aligned}$	Mean [\%]	$\begin{gathered} \text { RMS } \\ {[\%]} \end{gathered}$
$\delta L_{\text {l bl }} / L_{\text {l,b1 }}$	0.39	4.2	$8.3 \cdot 10^{-2}$	0.16
$\delta\left(\mathrm{dL}_{\mathrm{x}, \mathrm{b1}} / \mathrm{ds}\right) /\left(\mathrm{dL}_{\mathrm{x}, \mathrm{b} 1} / \mathrm{ds}\right)$	-0.97	1.6	-0.13	0.17
$\delta L_{\text {l,b2 }} / L_{\text {l }}$ b2	-0.14	4.9	0.21	0.16
$\delta\left(\mathrm{dL}_{\mathrm{x}, \mathrm{b} 2} / \mathrm{ds}\right) /\left(\mathrm{dL}_{\mathrm{x}, \mathrm{b} 2} / \mathrm{ds}\right)$	0.10	1.7	-9.7-10-2	0.17

Conclusion: for $\beta^{*}=3.5 \mathrm{~m}$ TOTEM can measure the tranformatrix between IP5 and RPs with a precision

Relative error distributions before and after matching

ELASTIC SCATTERING WITH $\boldsymbol{\beta}^{*}=3.5 \mathrm{~m}$

Elastic scatterimg with B $^{*}=3.5 \mathrm{~m}$
Results (the matched L_{ν} and $\mathrm{dL}_{\mathrm{L}} / \mathrm{ds}$ are used for reconstruction):

- RP approaches the beam down to $7 \sigma_{\text {beam size@RP }}$
- published in EPL 95 (2011) 41001
- $\xi \approx 0$

Collinearity $\boldsymbol{\Theta}_{\mathbf{x}}$
Spread in agreement with beam divergence (17-18 $\mu \mathrm{rad}$)

Fimal resullt: umfilded elastic scatterimg distributiom $\beta^{*}=3.5 \mathrm{~m}$

Published in EPL 95 (2011) 41001:

- |t| range spans from 0.36 to $2.5 \mathrm{GeV}^{2}$
- below $|\mathrm{t}|=0.47 \mathrm{GeV}^{2}$ exponential $\mathrm{e}^{-\mathrm{B}|\mathrm{t}|}$ behavior
- dip moves to lower |t|, proton becomes "larger"
- $1.5-2.0 \mathrm{GeV}^{2}$ power low behavior $|\mathrm{t}|^{-n}$

The measured d σ / dt compared with

Proton-proton

d σ / dt
@ISR

HIGH $\beta^{*}=90 \mathrm{~m}$ OPTICS AND RESULTS

B*=90 m opptics in gemeroal

$\beta^{*}=90 \mathrm{~m}$ optics achievable using the standard LHC injection optics. Properties:

- $\sigma_{\ominus^{*}}=2.5 \mu \mathrm{rad}, \mathrm{L}_{x} \approx 0, \mathrm{~L}_{\mathrm{y}} \approx 260 \mathrm{~m}$
- vertex size $\sigma_{\mathrm{IP}} \approx 212 \mu \mathrm{~m}$
- Acceptance: $|\mathrm{t}|>3 \cdot 10^{-2} \mathrm{GeV}^{2}$, RP distance from beam center $10 \sigma_{\text {beam size@RP }}$
- parallel to point focusing only in vertical plane @RP220

Effective lengths from IP5 to RP @ 220 m

The properties of the measured data:

- divergence is reduced with respect to 3.5 m optics (from $17-18 \mu \mathrm{rad}$ to $2.5 \mu \mathrm{rad}$)
- lower background compared to 3.5 m (< 0.1\%)
- uncertainty of luminosity 4% (CMS)
- low intensity bunches and $\beta^{*}=90 \mathrm{~m}$-> no pile-up from single diffraction

Objectives:

- First measurement of $\sigma_{\text {tot }}$ elastic scattering in a wide $|t|$ range
- inclusive studies of diffractive processes
- measurement of forward charged multiplicity

Sensitivity of the effective length L_{ν} :

- 1 \% perturbations magnet strength, beam momenta

Perturbed element	$\delta_{\text {Ly,bb }} / L_{\text {L,b1 }}$
MQXA.1R5	0.14
MQXB.A2R5	-0.23
MQXB.B2R5	-0.25
MQXA.3R5	0.20
MQY.4R5.B1	-0.01
MQML.5R5.B1	0.04
$\Delta \mathrm{p} / \mathrm{p}$	0.01

Obbtained da/dit with $\beta^{*}=90$ m 0 pitics

Published in EPL 96 (2011) 21002

Properties:

- |t| range of the new set is $0.02-0.33 \mathrm{GeV}^{2}$
- $\mathrm{B}=\left(20.1 \pm 0.2^{\text {stat }} \pm 0.3^{\text {ssst }}\right) \mathrm{GeV}^{-2}$
confirms that B increases with V s
- excellent agreement between the two measurements with different optics
- TOTEM has measured the inelastic and elastic cross sections and the total cross section with the luminosity independent method at $\mathrm{Vs}=7 \mathrm{TeV}$
- Measurement of elastic scattering at very low-t and determination of the ρ parameter will be in reach during the high β ($\beta^{*}=500 \mathrm{~m}, 1000 \mathrm{~m}$) runs
- Several analyses on diffractive physics are going on, results are expected soon

Thank you for you @ttention I

Backnup pmit

Olbtaimed da/dit with the most recemt resullt

1. Low luminosity (CMS) + Elastic d $\sigma /$ dt + Optical th. (EPL 96(2011) 21002)

- depends on CMS luminosity for low-L bunches, elastic efficiencies and on ρ

$$
\sigma_{t o t}^{2}=\left.\frac{16 \pi(\hbar c)^{2}}{1+\rho^{2}} \cdot \frac{d \sigma_{e l}}{d t}\right|_{t=0}
$$

$$
\sigma_{T O T}=98.3 \pm 2.8 \mathrm{mb}
$$

2. High luminosity (CMS) + Elastic + Optical theorem (to be published)

$$
\sigma_{T O T}=98.6 \pm 2.2 \mathrm{mb}
$$

3. High luminosity (CMS) + Elastic + Inelastic (to be published)

- minimizes dependence on elastic efficiencies and ρ independent

$$
\sigma_{\text {tot }}=\sigma_{e l}+\sigma_{\text {inel }} \quad \sigma_{\text {TOT }}=99.1 \pm 4.3 \mathrm{mb}
$$

4. Elastic ratios + Inelastic ratios + Optical theorem (preprint)

- Eliminates dependence on luminosity

$$
\sigma_{\text {tot }}=\frac{16 \pi(\hbar c)^{2}}{1+\rho^{2}} \cdot \frac{\left.\frac{d N_{E L}}{d t}\right|_{t=0}}{N_{E L}+N_{I N E L}}
$$

Total Cross-Sectiom witth the luminnosity indlependlemt method

 imelundimg the $\mathbb{I T e V}$ resullt

Lunminosity calibroation

TOTEM is able to determine the CMS luminosity:

- Elastic and inelastic rates are used

$$
L=\frac{1+\rho^{2}}{16 \pi(\hbar c)^{2}} \cdot \frac{\left(N_{E L}+N_{I N E L}\right)^{2}}{d N_{E L} /\left.d t\right|_{t=0}}
$$

Obtained luminosity values

$$
\begin{array}{lll}
\text { Octoberdata: } & L_{\text {CMS }}=82.8 \mu b^{-1} \pm 4 \% & L_{\text {TOTEМ }}=83.7 \mu b^{-1} \pm 3.8 \% \\
\text { Junedata }: & L_{\text {CMS }}=1.65 \mu b^{-1} \pm 4 \% & L_{\text {TOTЕМ }}=1.65 \mu b^{-1} \pm 4.5 \%
\end{array}
$$

Signal to background normalisation (also as a function of $\Delta \theta_{y}$)
$\sigma^{*} \rightarrow$ t-reconstruction resolution:
$\frac{\sigma(t)}{12 / \frac{t}{3} / 2012}=\frac{\sqrt{2} p \sigma^{*}}{\sqrt{t}}: \begin{aligned} & 0.4 \mathrm{GeV}^{2}: 14 \% \\ & 1 \mathrm{GeV}^{2}: 8.8 \% \\ & 3 \mathrm{GeV}^{2}: 5.1 \%\end{aligned}$

Signal vs. background (t)

$$
\begin{aligned}
& |\mathrm{t}|=0.4 \mathrm{GeV}^{2}: B / \mathrm{S}=(11 \pm 2) \% \\
& |\mathrm{t}|=0.5 \mathrm{GeV}^{2}: B / \mathrm{S}=(19 \pm 3) \% \\
& |\mathrm{t}|=1.5 \mathrm{GeV}^{2}: B / S=(0.8 \pm 0.3) \%
\end{aligned}
$$

Correction error (t_{y}):
$0.31 \mathrm{GeV}^{2}$: 30%
$0.33 \mathrm{GeV}^{2}: 11 \%$
$0.35 \mathrm{GeV}^{2}: 2 \%$
$0.4 \mathrm{GeV}^{2}: 0.8 \%$
$0.5 \mathrm{GeV}^{2}: 0.1 \%$

Total φ-acceptance correction

Critical at low t-acceptance limit 12/3/2012

10^{2}	No.	$\mathrm{t}\left[\mathrm{GeV}^{2}\right]$	O* * [rad]	Accepted φ (2 diag.) [${ }^{\circ}$]	φ accept. correct. factor
	1	0.33	$1.65 \mathrm{E}-04$	38.6	9.3 $\pm 4.7 \%$
	2	0.36	$1.71 \mathrm{E}-04$	76.4	4.7 $\pm 1.8 \%$
	3	0.60	$2.21 \mathrm{E}-04$	162.5	2.2 $\pm 0.3 \%$
	4	1.00	$2.86 \mathrm{E}-04$	209.8	1.7 $\pm 0.1 \%$
	5	1.80	$3.83 \mathrm{E}-04$	246.3	1.5
10	6	3.00	$4.95 \mathrm{E}-04$	269.0	1.3

