

LHC optics estimation

Frigyes Nemes

Eötvös Loránd University

on behalf of the

TOTEM collaboration

http://totem.web.cern.ch/Totem/

Zimányi Winter School Budapest 2012, December 3.– 7.

Experimental layout of the TOTEM experiment

Roman Pot stations

RP stations

- 2 units at about 5 m distance
- Measurement of very small proton scattering angles (few µrad)
- Vertical and horizontal pots mounted as close as possible to the beam
- BPM fixed to the structure gives precise position relative to the beam
- Overlapping detectors: relative alignment (10 μm inside unit between 3 RPs)

RP unit: 2 vertical, 1 horizontal pot + BPM

10 planes of edgeless detectors

Frigyes Nemes, TOTEM

Si edgeless detector

3.5 cm

1 Roman Pot

12/3/2012

Proton position at a given RP (x, y) is a function of position (x^{*}, y^{*}) and angle (Θ_x^*, Θ_y^*) at IP5:

$$\begin{array}{c} \text{measured} \left[\left(\begin{array}{c} x \\ \Theta_x \\ y \\ \Theta_y \\ \Delta p/p \end{array} \right)_{\text{RP}} = \left(\begin{array}{c} v_x & L_x & 0 & 0 & D_x \\ v'_x & L'_x & 0 & 0 & D'_x \\ 0 & 0 & v_y & L_y & 0 \\ 0 & 0 & v'_y & L'_y & 0 \\ 0 & 0 & 0 & 1 \end{array} \right) \left(\begin{array}{c} x^* \\ \Theta_x^* \\ y^* \\ \Theta_y^* \\ \Delta p/p \end{array} \right)_{\text{IP5}} \end{array} \right] \text{reconstructed}$$

The effective length and magnification expressed with the phase advance

$$L(s) = \sqrt{\beta(s)\beta^*} \sin \Delta \mu(s) \qquad v(s) = \sqrt{\beta(s)\beta^{*-1}} \cos \Delta \mu(s) \qquad \Delta \mu(s) = \int_0^s \beta^{-1}(s') ds'$$

Beam size and divergence at IP5 and RP

 $\sigma(x) = \sqrt{\varepsilon \beta_x}$ describes the spread of primary vertex and beam size at RP $\sigma(\Theta) = \sqrt{\varepsilon / \beta_x}$ beam divergence @IP5 limits the angle measurement precision

β* = 1535 m is the *target* optics. Requires different injection optics. Properties:

- beam divergence $\sigma_{e^*} \approx 0.3 \mu rad$, vertex size $\sigma_{\mu} \approx 450 \mu m$
- $\Delta \mu_{x,y} = \pi/2 \rightarrow v_{x,y} = 0$. Parallel-to-point focusing **eliminates** the large vertex contribution
- the large (270 m) vertical effective length L_v pushes protons vertically into RP acceptance
- acceptance in momentum transfer, $|t| > 2 \cdot 10^{-3} \text{ GeV}^2$, with 10 $\sigma_{\text{beam size@RP}}$

Magnification from IP5 to RP @220 m

5

LOW $\beta^*=3.5$ m OPTICS

Objective:

to measure elastic scattering at high |t|

Properties of the optics:

- $\sigma_{IP} \approx 37 \ \mu m$ (magnification is not crucial)
- $L_x \approx 0, L_y = 22.4 \text{ m}$
- beam divergence $\sigma_{\Theta^*} \approx 17-18 \ \mu rad$

Data sources to improve our optics understanding:

- TIMBER database magnet currents
- FIDEL team conversion curves, implemented with LSA
- WISE field harmonics, magnet's displacements`

Machine imperfections:	Perturbed element	δL _{v.b1} /L _{v.b1} [%]
• Strength conversion error, $\sigma(B)/B \approx 10^{-3}$	MQXA.1R5	0.98
• Beam momentum offset, $\sigma(p)/p \approx 10^{-3}$	MQXB.A2R5	-2.24
• Magnet rotations, $\sigma(\phi) \approx 1 \text{ mrad}$	MQXB.B2R5	-2.42
• Beam harmonics, $\sigma(B)/B \approx 10^{-4}$	MQXA.3R5	1.45
• Power converter errors, $\sigma(I)/I \approx 10^{-4}$	MQY.4R5.B1	-0.10
• Magnet positions Δx , $\Delta y \approx 100 \ \mu m$	MQML.5R5.B1	0.05
Imperfections alter the optics !	Δp/p	-2.19

Constraints from proton tracks in the Roman Pots $\beta^*=3.5m$

Optics imperfections can be determined from proton tracks *measured* in the Roman Pots. The method is based on:

- elastic events are easy to tag
- the elements of the transport matrix are mutually correlated
- elastic scattering ensures that

$$\Theta_{y,b1}^* = \Theta_{y,b2}^*$$
$$\Theta_{x,b1}^* = \Theta_{x,b2}^*$$

Matching the optics $\beta^*=3.5m$

12/3/2012

The Monte-Carlo study included the effect of:

- magnet strengths
- beam momenta
- displacements, rotations
- kickers, field harmonics
- elastic scattering Θ -distributions

Optical function	Before		Matched	
relative error	Mean [%]	RMS [%]	Mean [%]	RMS [%]
$\delta L_{y,b1}/L_{y,b1}$	0.39	4.2	8.3 · 10 ⁻²	0.16
$\delta (dL_{x,b1}/ds)/(dL_{x,b1}/ds)$	-0.97	1.6	-0.13	0.17
$\delta L_{y,b2}/L_{y,b2}$	-0.14	4.9	0.21	0.16
$\delta (dL_{x,b2}/ds)/(dL_{x,b2}/ds)$	0.10	1.7	-9.7· 10 ⁻²	0.17

Conclusion: for $\beta^*=3.5m$ TOTEM can measure the transfer matrix between IP5 and RPs with a precision

ELASTIC SCATTERING WITH $\beta^*=3.5$ m

Results (the matched L_y and dL_x/ds are used for reconstruction):

- RP approaches the beam down to 7 $\sigma_{\text{beam size@RP}}$
- published in EPL **95** (2011) 41001
- ξ≈0

Collinearity Θ_y

$\begin{array}{c} Collinearity \ \Theta_x \\ Spread \ in \ agreement \ with \ beam \\ divergence \ (17\text{-}18 \ \mu rad) \end{array}$

Published in EPL 95 (2011) 41001:

- |t| range spans from 0.36 to 2.5 GeV²
- below |t| = 0.47 GeV² exponential e^{-B|t|}
 behavior
- dip moves to lower |t|, proton becomes "larger"
- 1.5 2.0 GeV² power low behavior $|t|^{-n}$

HIGH β* = 90 m OPTICS AND RESULTS

- β^* = 90m optics achievable using the standard LHC injection optics. Properties:
- $\sigma_{\Theta^*} = 2.5 \ \mu rad$, $L_x \approx 0$, $L_y \approx 260 \ m$
- vertex size $\sigma_{IP} \approx 212 \ \mu m$
- Acceptance: $|t| > 3 \cdot 10^{-2} \text{ GeV}^2$, RP distance from beam center 10 $\sigma_{\text{beam size@RP}}$
- parallel to point focusing **only** in **vertical** plane @RP220

Effective lengths from IP5 to RP @220 m

The properties of the measured data:

- divergence is reduced with respect to 3.5 m optics (from 17-18 μrad to 2.5 μrad)
- lower background compared to 3.5 m (< 0.1%)
- uncertainty of luminosity 4% (CMS)
- low intensity bunches and β*=90 m -> no pile-up from single diffraction

Objectives:

- First measurement of σ_{tot} elastic scattering in a wide |t| range
- inclusive studies of diffractive processes
- measurement of forward charged multiplicity

Sensitivity of the effective length L_v :

- 1 ‰ perturbations magnet strength, beam momenta
- Conclusion: not necessary to improve our understanding about β^* =90 m optics

	Perturbed element	δ _{ιy,b1} /L _{y,b1} [%]
	MQXA.1R5	0.14
	MQXB.A2R5	-0.23
	MQXB.B2R5	-0.25
->	MQXA.3R5	0.20
	MQY.4R5.B1	-0.01
	MQML.5R5.B1	0.04
	Δp/p	0.01

Obtained $d\sigma/dt$ with $\beta^*=90$ m optics

Published in EPL 96 (2011) 21002

Properties:

- |t| range of the new set is 0.02 0.33 GeV²
- B = $(20.1 \pm 0.2^{\text{stat}} \pm 0.3^{\text{syst}})$ GeV⁻² confirms that B increases with \sqrt{s}
- excellent agreement between the two measurements with different optics

- TOTEM has measured the inelastic and elastic cross sections and the total cross section with the <u>luminosity independent</u> method at vs=7 TeV
- Measurement of elastic scattering at very low-t and determination of the ρ parameter will be in reach during the high β (β *= 500 m, 1000 m) runs
- Several analyses on diffractive physics are going on, results are expected soon

Thank you for you attention !

Backup part

- 1. Low luminosity (CMS) + Elastic $d\sigma/dt$ + Optical th. (EPL 96(2011) 21002)
 - depends on CMS luminosity for low-L bunches, elastic efficiencies and on ρ

2. High luminosity (CMS) + Elastic + Optical theorem (to be published)

 $\sigma_{TOT} = 98.6 \pm 2.2 \text{ mb}$

- 3. High luminosity (CMS) + Elastic + Inelastic (to be published)
 - minimizes dependence on elastic efficiencies and ρ independent

$$\sigma_{tot} = \sigma_{el} + \sigma_{inel} \qquad \qquad \sigma_{TOT} = 99.1 \pm 4.3 \text{ mb}$$

4. Elastic ratios + Inelastic ratios + Optical theorem (preprint)

Eliminates dependence on luminosity

$$\sigma_{TOT, 7 TeV} = 98.0 \pm 2.5 \text{ mb}$$

$$\sigma_{TOT, 7 TeV} = 101.7 \pm 2.9 \text{ mb}$$

TOTEM is able to determine the CMS luminosity:

• Elastic and inelastic rates are used

$$L = \frac{1 + \rho^2}{16\pi (\hbar c)^2} \cdot \frac{(N_{EL} + N_{INEL})^2}{dN_{EL} / dt}\Big|_{t=0}$$

Obtained luminosity values

Octoberdata:
$$L_{CMS} = 82.8 \,\mu b^{-1} \pm 4\%$$

$$L_{TOTEM} = 83.7\,\mu b^{-1} \pm 3.8\%$$

June data :
$$L_{CMS} = 1.65 \,\mu b^{-1} \pm 4\%$$

$$L_{TOTEM} = 1.65 \,\mu b^{-1} \pm 4.5\%$$

Total φ -acceptance correction