Charmonium spectral functions in 2+1 flavour lattice $$\rm QCD$$

Attila Pásztor ¹ apasztor@bodri.elte.hu In collaboriation with S. Borsányi² S. Dürr²³ Z. Fodor¹²³ C. Hoelbling² S. D. Katz¹ S. Krieg²³ D. Nógrádi¹ B. C. Tóth² N. Trombitás¹ K. K. Szabó²³

¹Eötvös University

²University of Wuppertal

³Jülich Supercomputing Center

Zimányi Winter School on Heavy Ion Physics, 2012, Budapest

Outline of the talk

- Definition of the SPF, what is it good for?
- The Maximum Entropy Method
- Demonstration of the method with mock data analysis

• Recent results on J/Ψ and η_c

Hadronic current operators

$$J_H(\vec{x},t) = \bar{q}(\vec{x},t)\Gamma_i q(\vec{x},t)$$

$$\Gamma_H = 1, \gamma_5, \gamma_\mu, \gamma_\mu \gamma_5 \text{ for } \mathbf{H} = \mathbf{S}, \mathbf{P}, \mathbf{V}, \mathbf{A}$$

Lattice \rightarrow Euclidean correlator

$$G(\tau, \vec{p}) = D_H^{>}(-i\tau, \vec{x}) = \int d^3x e^{ipx} \left\langle T_{\tau} J_H(-i\tau, \vec{x}) J_H(0, \vec{0}) \right\rangle$$

Attila Pásztor (ELTE)

Charmonium in 2+1 flavour lQCD

Preliminaries

Spectral function

$$A_H(\omega) = \frac{1}{\pi} \text{Im} D_{\text{H}}^{\text{R}}(\mathbf{p}_0, \tilde{\mathbf{p}}) = \dots = \frac{(2\pi)^2}{Z} \sum_{m,n} \left(e^{-E_n/T} \pm e^{-E_m/T} \right) |\langle n|J_H(0)|m \rangle|^2 \,\delta^{(4)}(p_\mu - k_\mu^n + k_\mu^m)$$

- $G \to A$ Analytic continuation problem
- Stable particle at T=0 $\rightarrow \delta$ -peak
- \bullet Quasiparticle in matter \rightarrow smeared peak
- Accessible by measuring dilepton rates in HI collisions $(T \neq 0)$
- Accessible by measuring R-ratio in lepton collisions $\left(T=0\right)$
- $\bullet~{\rm Kubo-formulas} \rightarrow {\rm transport~coefficcients}$

Determining the spectral function

Relation to the Euclidean time correlator

$$G(\tau, \vec{p}) = \int_0^\infty d\omega A(\omega, \vec{p}) K(\omega, \tau)$$
$$K(\omega, \tau) = \frac{\cosh(\omega(\tau - 1/2T))}{\sinh(\omega/2T)}$$

Regularizing

This inversion is ill-defined. Minimum of χ^2 degenerate. To get a unique answer one has to regularize. A commonly used regularization scheme is the Maximum Entropy Method.

The Maximum Entropy Method

The method in a nutshell

$$Q = \alpha S - \frac{1}{2}\chi^{2}$$

$$S = \int d\omega \left(A(\omega) - m(\omega) - A(\omega) \log \left(\frac{A(\omega)}{m(\omega)} \right) \right)$$

$$\chi^{2} = \sum_{i,j} (G_{i}^{\text{fit}} - G_{i}^{\text{data}}) C_{ij}^{-1} (G_{j}^{\text{fit}} - G_{j}^{\text{data}})$$

$$G_{i} = \int A(\omega) K(\omega, \tau_{i}) d\omega$$

 $m(\omega)$ is a function, summarizing our prior knowledge of the solution. Then we average over α . The conditional probability $P[\alpha|\text{data}, m]$ is given by Bayes' theorem.

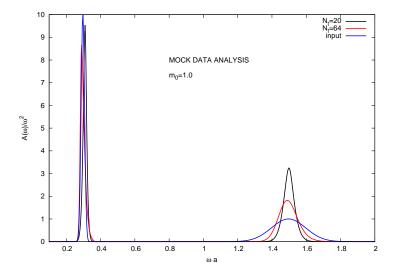
Strategy

- Write down an input spectral function A_{in}
- Generate correlators by integrating

$$G(\tau) = \int K(\tau, \omega) A_{in}(\omega) d\omega$$

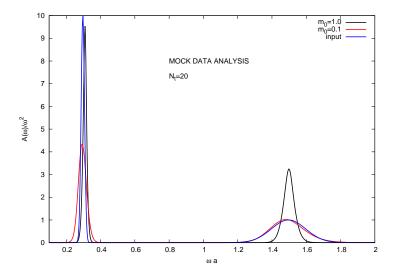
- Generate mock data by adding gaussian noise with variance $\sigma(\tau) = \eta \cdot \tau \cdot G_{mock}(\tau).$
- Reconstruct spectral function with MEM. For now, we will use a prior function: $m(\omega) = m_0 \omega^2$

How many data points are enough?

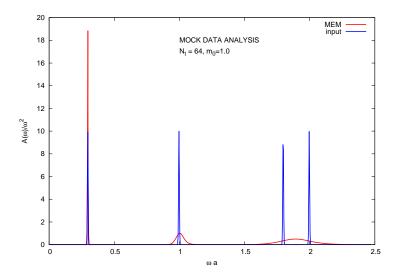


Charmonium in 2+1 flavour lQCD

Sensitivity on the prior function



Individual resolution of many peaks



Lessons learned

- MEM gives the correct qualitative features of the spectral function, but it is not a precise quantitative method.
- The peak positions agree well with the input, the shapes do not
- As long as the data points are not too noisy, O(10) point are enough for reconstruction.
- Features that remain unchanged by varying the prior are restricted by the data.
- Peaks close in position can be merged into one broader peak.

Analysis with lattice QCD data

Quenched approximation

In our simulation, **u**,**d**, and **s** quarks, are **dynamical**, but c quarks are not. They are in the quenched approximation. There are no internal charm quark loops, they are only at tree level.

Mass tuning

We had m_s and m_{ud} already tuned (Science 322 (2008) 1224-1227, arXiv:0906.3599) We adopted a charm mass, chosen so that the ratios of the masses of J/Ψ , η_c , D_s and φ mesons are (close to) physical.

Motivation for 2+1 flavour calculation

The quenched approximation in the light quark sector is a good approximation only at zero temperature. Not only the transition temperature, but also the qualitative behaviour is quite different (quenched QCD: 1st order transition, dynamical quarks: cross-over).

Analysis with lattice QCD data

Lattice details

Gauge action = Symanzik tree-level improved gauge action Fermion action = 2+1 dynamical Wilson fermions with 6 step stout smearing ($\rho = 0.11$) and tree-level clover improvement

$a[\mathrm{fm}]$	am_{ud}	am_s	m_{π}	N_s	N_t	$T = \frac{1}{N_t a}$
0.057(1)	-0.00336	0.0050	$545 \mathrm{MeV}$	64	64	$\approx 0 \mathrm{MeV}$
0.057(1)	-0.00336	0.0050	$545 \mathrm{MeV}$	64	28	$123 \mathrm{MeV}$
0.057(1)	-0.00336	0.0050	$545 \mathrm{MeV}$	64	20	$173 \mathrm{MeV}$
0.057(1)	-0.00336	0.0050	$545 \mathrm{MeV}$	64	18	$192 \mathrm{MeV}$
0.057(1)	-0.00336	0.0050	$545 \mathrm{MeV}$	64	16	$216 \mathrm{MeV}$
0.057(1)	-0.00336	0.0050	$545 \mathrm{MeV}$	64	14	$247 \mathrm{MeV}$
0.057(1)	-0.00336	0.0050	$545 \mathrm{MeV}$	64	12	$288 \mathrm{MeV}$

Meson masses

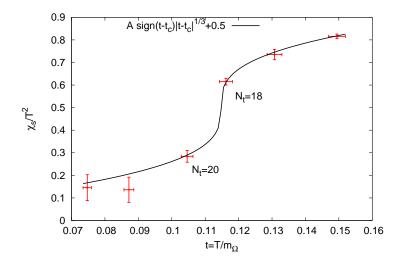
Obtained by fitting $A \cosh(ma(t - N_t/2))$ to the smeared correlators measured on the 0 temp. lattice. Errors from jackknife method.

Results

	J^P	m_i	name	ma	$ma/m_\Omega a$	$m_{exp}[MeV]$	$m_{exp}/m_{D_s^*}$
-	0^{-}	m_s, m_s	$\eta,?$	0.1828(3)	0.321(1)	???	?
	0^{-}	m_s, m_c	D_s	0.54(1)	0.95(2)	1968.49	0.932
	0^{-}	m_c, m_c	η_c	0.8192(7)	1.437(4)	2981.0	1.411
	1^{-}	m_s, m_s	$\phi,?$	0.270(1)	0.474(3)	1019.455, ?	0.483,?
	1-	m_s, m_c	D_s^*	0.570(1)	1	2112.3	1
	1^{-}	m_c, m_c	J/Ψ	0.8388(8)	1.472(2)	3096.916	1.466

? - The disconnected diagrams are not taken into account, so these "correlation masses" are not the same as the physical meson masses.

Strange quark susceptibility \rightarrow transition temperature



Outline of MEM procedure

On the zero temperature lattice

- Drop data points, emulating the number of data points available at finite temperature (remember $T = 1/(N_t a)$)
- Do the same analysis as with the finite temperature correlators. If the ground state peak cannot be reconstructed, the given number of data points is not reliable
- RESULT: $N_t=12$ NOT OK, $N_t=14,16,18,20$ OK Position of ground state peak is always somewhat overerestimated.

Finite temperature

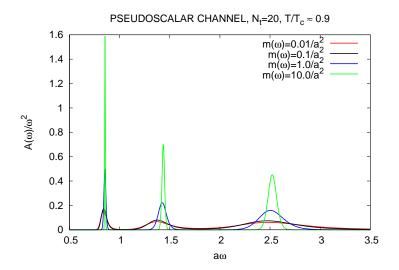
- Systematic error analysis: vary $\Delta \omega$, N_{ω} , the shape of the prior function: $m_0, m_0 \omega^2, 1/(m_0 + \omega)$ and $m_0=0.01, 0.1, 1.0, 10.0$.
- Statistical error analysis: given set of parameters, 20 jackknife samples

Expectations of heavy ion physicists

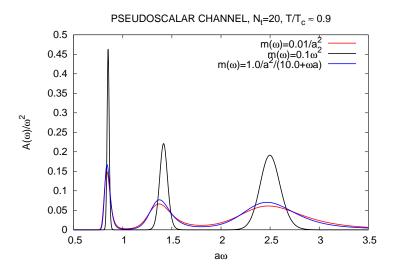
- At sufficiently high temperature, QCD undergoes a transition to a deconfined phase.
- Unlike light mesons, heavy mesons like J/Ψ may survive in the hot medium up to higher temperatures, before dissociating because of colour screening, and collisions within the medium.
- Their supression may be a good experimental signal on the formation of QGP.

Original paper on the idea: T. Matsui, H. Satz, Phys. Lett. B178, 416 (1986).

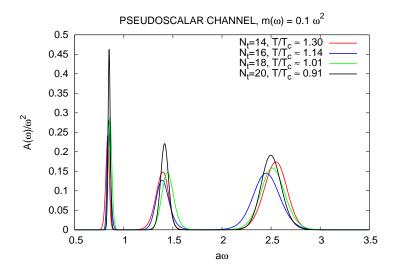
Prior function sensitivity



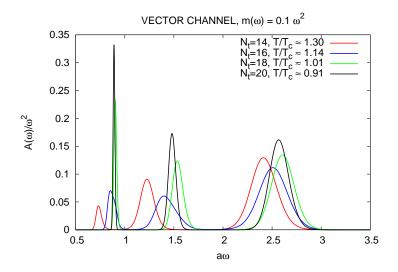
Prior function sensitivity



Temperature dependence, η_c



Temperature dependence, J/Ψ



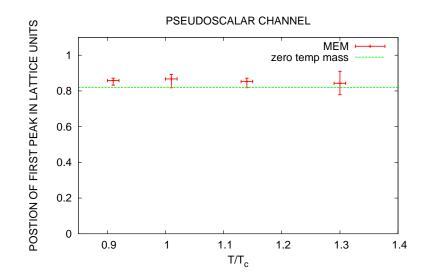
Pseudoscalar channel

The ground state peak is clearly seen on all available temperatures. The position is at a slightly higher energy than the mass at zero temperature (most likely an artifact).

Vector channel

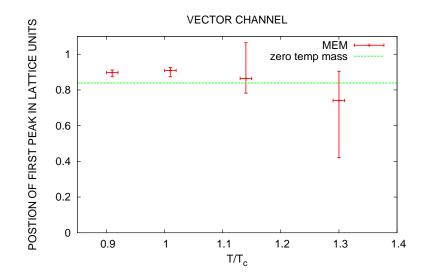
The ground state peak is clearly seen on the N_t=16,18,20 lattices. The position is at a slightly higher energy than the mass at zero temperature. On the N_t=14 lattice, for some reconstruction parameters, the first peak is seen at a considerably lower energy than the J/Ψ mass, for other parameters, the first two peaks merge into one peak.

Temperature dependence, η_c



Charmonium in 2+1 flavour lQCD

Temperature dependence, J/Ψ



Charmonium in 2+1 flavour lQCD

What's next?

- No clear indication of η_c melting up to about $1.3T_c$
- Some indications of J/Ψ melting at about $1.3T_c$
- To access higher temperatures, anisotropic lattices are needed
- Anisotropy tuning with dynamical quarks is hard
- Anisotropy tuning with Wilson flow : hep-lat/1205.0781