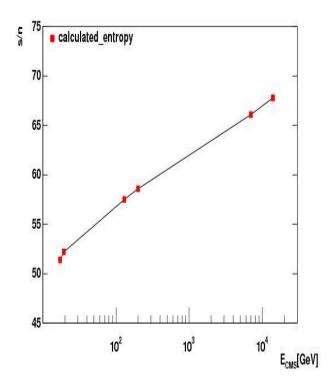
### Predictions for Hadronic Yields at 5.52 TeV Pb+Pb

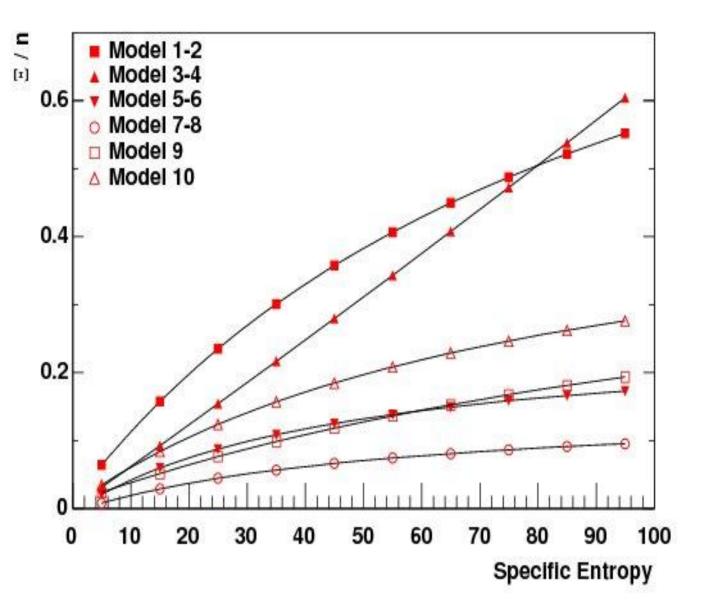
B. Lukács and A. Ster + many, back to 1987 as


## History

- J. Zimányi and A. Rácz
- H-W. Barz
- T. S. Biró
- L. P. Csernai
- T. Csörgő
- B. Jakobsson
- B. Kämpfer
- Gy. Kuti
- P. Lévai
- K. Martinás
- L. Polonyi
- K. Szlachányi
- Gy. Wolf

### Rehadronisation Models

- #1-#8: (Gluon Fragmentation; Final Hadronic Masses; Final State Compressibility) 0: No, 1: Yes with Weight 1 as Binary +1
- #9: No Quark Phase At All
- #10: Sequential Fission
- #11: As #7 but with Maximal Possible Gluon Fragmentation (weight 1.36)


### E/N vs. S/N, Pb+Pb



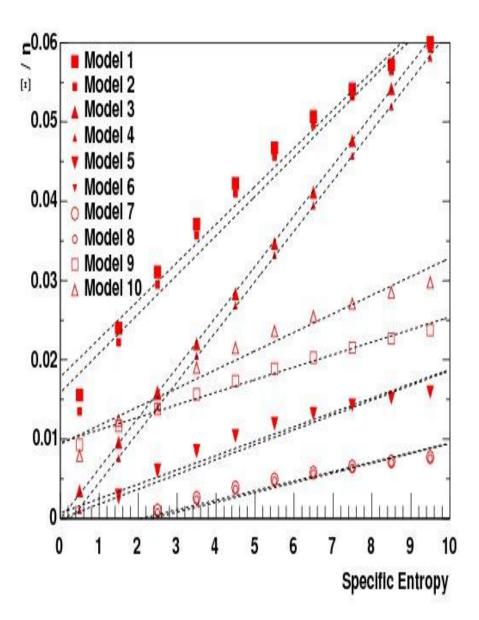

| ECM [GeV] | S/N  |
|-----------|------|
| 17.3      | 51.4 |
| 19.4      | 52.2 |
| 130       | 57.5 |
| 200       | 58.6 |
| 2760      | 64.2 |
| 5520      | 65.7 |

Figure is direct calculation. For the upper 4 points a logarithmic fit is excellent, expected as ultrarelativistic: S/N=47.019+2.168\*ln(E cm/A, GeV)±0.14. See Table.

### Rehadronisation, Xi/N



### Rehadronisation, Xi/N, low S/N



## Successes/failures at SPS/RHIC

| Model | $158 { m GeV}$ | $200 { m ~GeV}$ | $130  {\rm GeV}$ | $200 { m GeV}$ |
|-------|----------------|-----------------|------------------|----------------|
|       | SPS            | SPS             | RHIC             | RHIC           |
| 1 & 2 | 0.394          | 0.759           | 0.012            | 0.0503         |
| 3 & 4 | 1.326          | 2.819           | 0.009            | 0.0306         |
| 5 & 6 | 0.120          | 0.141           | 0.005            | 0.0330         |
| 7&8   | 0.165          | 0.283           | 0.005            | 0.0308         |
| 9     | 0.020          | 0.028           | 0.072            | 0.0950         |
| 10    | 0.084          | 0.176           | 0.054            | 0.1288         |

### Notes

• These are  $\chi^2$  mean deviations for measured ratios. It seems that until SPS energies #9 is the best; for RHIC #7 is the best, #5 is close second, but simple averaging does not help.

# Checks for SPS/RHIC energies; ratios used

| Energy/nucl.                  | Ratio                                                       | Experiment                     | Reference  | Measurement       | Model 9          |
|-------------------------------|-------------------------------------------------------------|--------------------------------|------------|-------------------|------------------|
| 158 GeV SPS                   | $\Xi^0/\Lambda$                                             | WA97                           | [27]       | $0.14\pm0.02$     | $0.14 \pm 0.13$  |
|                               | $\overline{\Xi^0}/\overline{\Lambda}$                       | WA97                           | [27]       | $0.26\pm0.05$     | $0.19\pm0.13$    |
|                               | $\Omega/\Xi^0$                                              | WA97                           | [27]       | $0.19\pm0.04$     | $0.27\pm0.13$    |
|                               | $\overline{\Omega}/\overline{\Xi^0}$                        | WA97                           | [27]       | $0.30\pm0.09$     | $0.35\pm0.13$    |
|                               | $\overline{\Lambda}/\Lambda$                                | WA97, NA49                     | [27]       | $0.145 \pm 0.024$ | $0.38\pm0.13$    |
|                               | E-/E-                                                       | WA97                           | [27]       | $0.27\pm0.05$     | $0.49\pm0.13$    |
|                               | $\overline{\Omega}/\Omega$                                  | WA97                           | [27]       | $0.42\pm0.12$     | $0.66 \pm 0.13$  |
|                               | $(\Xi^- + \overline{\Xi^-})/(\Lambda + \overline{\Lambda})$ | NA49                           | [27]       | $0.13\pm0.03$     | $0.16\pm0.13$    |
|                               | $\overline{\Lambda}/\overline{p}$                           | NA49                           | [35]       | $1.05\pm0.16$     | $1.12\pm0.13$    |
|                               | $K^-/K^+$                                                   | NA49                           | [28]       | $0.59\pm0.05$     | $0.77\pm0.13$    |
| 200 GeV SPS                   | $\overline{\Lambda}/\overline{p}$                           | NA35                           | [26]       | $0.80\pm0.25$     | $1.12\pm0.14$    |
| 5244444444678784 - 1937778344 | $\Xi^{-}/\Lambda$                                           | WA85                           | [19]       | $0.19\pm0.01$     | $0.15\pm0.14$    |
|                               | $\overline{\Xi^-}/\overline{\Lambda}$                       | WA85                           | [19],[26]  | $0.21\pm0.02$     | $0.19\pm0.14$    |
|                               | $(\Omega + \overline{\Omega})/(\Xi^- + \overline{\Xi^-})$   | NA35                           | [26]       | $0.80 \pm 0.4$    | $0.28\pm0.14$    |
|                               | $\overline{\Lambda}/\Lambda$                                | NA35                           | [33]       | $0.18\pm0.06$     | $0.38\pm0.14$    |
|                               |                                                             |                                |            |                   | Model 7          |
| 130 GeV RHIC                  | $\overline{p}/p$                                            | STAR                           | [28], [29] | $0.64\pm0.05$     | $0.59\pm0.06$    |
|                               | $\overline{\Omega}/\Omega$                                  | STAR                           | [30]       | $1.00\pm0.2$      | $1.00\pm0.06$    |
|                               | $\overline{\Lambda}/\Lambda$                                | STAR                           | [28], [29] | $0.77\pm0.05$     | $0.65\pm0.06$    |
|                               | <u>-</u> /=                                                 | STAR                           | [28], [29] | $0.81\pm0.05$     | $0.78\pm0.06$    |
|                               | $\pi^{-}/\pi^{+}$                                           | PHOBOS                         | [29]       | $0.95\pm0.06$     | $1.02\pm0.06$    |
|                               | $K^{-}/K^{+}$                                               | STAR                           | [29]       | $0.90\pm0.05$     | $0.82\pm0.06$    |
| 200 GeV RHIC                  | $\overline{p}/p$                                            | PHOBOS, PHENIX<br>STAR, BRAHMS | [30], [31] | $0.84 \pm 0.04$   | $0.60\pm0.16$    |
|                               | $K^-/K^+$                                                   | PHOBOS, PHENIX<br>BRAHMS       | [30], [31] | $0.98\pm0.04$     | $0.82\pm0.16$    |
|                               | $\pi^{-}/\pi^{+}$                                           | PHOBOS                         | [31]       | $1.02\pm0.02$     | $1.02\pm0.16$    |
|                               | $K^{-}/\pi^{-}$                                             | STAR, BRAHMS                   | [30]       | $0.15\pm0.02$     | $0.61\pm0.16$    |
|                               | $\overline{p}/\pi^{-}$                                      | BRAHMS                         | [30]       | $0.08\pm0.01$     | $0.16\pm0.16$    |
|                               | $(K^-/\overline{p})$                                        | STAR, BRAHMS                   | [30]       | $1.87 \pm 0.34$   | $3.81 \pm 0.16)$ |

# Model predictions, u & d are not yet distinguished

| Particle            | Model 5 | Model 7 | Model 9 | Model 11 | Model 7<br>(with S/N=75) | Mass<br>(MeV) |
|---------------------|---------|---------|---------|----------|--------------------------|---------------|
| N                   | 528.79  | 475.95  | 389.19  | 585.18   | 512.60                   | 939           |
| $\overline{N}$      | 326.50  | 301.58  | 152.70  | 365.80   | 350.83                   | 939           |
| Y                   | 610.63  | 711.38  | 261.25  | 658.50   | 801.15                   | 1174          |
| $\overline{Y}$      | 412.91  | 479.61  | 113.76  | 461.67   | 557.46                   | 1174          |
| Ξ                   | 79.09   | 38.49   | 59.65   | 26.79    | 44.11                    | 1318          |
| Ξ                   | 64.00   | 30.98   | 32.14   | 22.33    | 35.94                    | 1318          |
| Ω                   | 19.79   | 1.01    | 8.03    | 0.35     | 1.17                     | 1672          |
| $\overline{\Omega}$ | 19.79   | 1.01    | 5.53    | 0.35     | 1.17                     | 1672          |
| π                   | 3755.23 | 3686.70 | 1775.05 | 4104.40  | 4212.90                  | 138           |
| Κ                   | 1285.38 | 1388.59 | 965.63  | 1273.83  | 1579.55                  | 496           |
| K                   | 1057.50 | 1141.80 | 757.30  | 1068.06  | 1319.53                  | 496           |
| η                   | 162.89  | 125.60  | 358.21  | 96.23    | 144.64                   | 549           |

#### Model deviations from conservations + efficiency of transferring the kinetic energy

| Total $N^o$ | Initial | Model 5 | Model 7 | Model 9 | Model 11 |
|-------------|---------|---------|---------|---------|----------|
| Particle    | 2       | 8322.50 | 8382.70 | 4878.44 | 8653.47  |
| Strangeness | 0       | 0.02    | 0.00    | 1.68    | -0.01    |
| Baryon      | 414     | 415.10  | 413.65  | 413.99  | 420.68   |

| Model # | $E_{tot}/414 \; [\text{GeV}]$ | $M_{tot}/414 \; [\text{GeV}]$ | $E_{transf}/414$ [GeV] |
|---------|-------------------------------|-------------------------------|------------------------|
| 5       | 2760                          | 9.73                          | 13.62                  |
| 7       | 2760                          | 9.80                          | 13.72                  |
| 9       | 2760                          | 5.77                          | 7.66                   |
| 11      | 2760                          | 9.78                          | 13.86                  |

#7 is quite good for conservation; efficiency is 0.5 %.

# Quark charges/spins considered

- Total starting quarks: u=578, d=664, s=0,
- Antiquarks 0. Final state masses & gluon fragmentation are u/d symmetric. Models: random u/d selection from common pool.

## Taking charge into consideration; results

| Particle                | Model 5 | Model 7 | Model 9 | Model 11 | Model 7          | Model 7        |
|-------------------------|---------|---------|---------|----------|------------------|----------------|
|                         |         |         | 2)      | 21       | (with $S/N=75$ ) | (200 GeV RHIC) |
| р                       | 261.53  | 235.41  | 190.87  | 289.62   | 253.85           | 221.30         |
| $\overline{p}$          | 163.25  | 150.79  | 76.35   | 182.90   | 175.42           | 131.99         |
| n                       | 267.26  | 240.54  | 198.32  | 295.56   | 258.76           | 226.66         |
| n                       | 163.25  | 150.79  | 76.35   | 182.90   | 175.42           | 131.99         |
| $\Sigma^+$              | 74.68   | 87.01   | 31.42   | 80.65    | 98.23            | 78.45          |
| $\overline{\Sigma^+}$   | 51.61   | 59.95   | 14.22   | 57.71    | 69.68            | 52.52          |
| $\Sigma^0$              | 152.64  | 177.82  | 65.29   | 164.61   | 200.27           | 160.69         |
| $\overline{\Sigma^0}$   | 103.23  | 119.90  | 28.44   | 115.42   | 139.37           | 105.04         |
| $\Sigma^{-}$            | 77.99   | 90.85   | 33.92   | 83.99    | 102.07           | 82.29          |
| $\overline{\Sigma^{-}}$ | 51.61   | 59.95   | 14.22   | 57.71    | 69.68            | 52.52          |
| Λ                       | 457.95  | 533.51  | 195.91  | 493.86   | 600.84           | 482.12         |
| $\overline{\Lambda}$    | 309.68  | 359.71  | 85.32   | 346.25   | 418.10           | 315.13         |
| $\Xi^0$                 | 39.12   | 19.04   | 29.25   | 13.26    | 21.84            | 16.90          |
| $\overline{\Xi^0}$      | 32.00   | 15.49   | 16.07   | 11.16    | 17.97            | 13.60          |
| $\Xi^{-}$               | 39.97   | 19.45   | 30.40   | 13.54    | 22.26            | 17.30          |
| <u>-</u>                | 32.00   | 15.49   | 16.07   | 11.16    | 17.97            | 13.60          |
| $\Omega^{-}$            | 19.79   | 1.01    | 8.03    | 0.35     | 1.17             | 0.89           |
| $\overline{\Omega^{-}}$ | 19.79   | 1.01    | 5.53    | 0.35     | 1.17             | 0.89           |
| $\pi^+$                 | 928.62  | 911.72  | 435.26  | 1015.69  | 1043.13          | 811.42         |
| $\pi^0$                 | 1877.62 | 1843.35 | 887.53  | 2052.50  | 2106.45          | 1642.49        |
| $\pi^-$                 | 948.99  | 931.63  | 452.26  | 1036.51  | 1063.32          | 831.07         |
| <i>K</i> +              | 635.72  | 686.80  | 473.57  | 630.45   | 782.21           | 613.97         |
| $K^-$                   | 528.75  | 570.90  | 378.65  | 534.03   | 659.77           | 503.06         |
| $K_L^0$                 | 589.21  | 636.35  | 435.36  | 588.70   | 728.55           | 565.94         |
| $K_S^0$                 | 589.21  | 636.35  | 435.36  | 588.70   | 728.55           | 565.94         |
| η                       | 162.89  | 125.6   | 358.21  | 86.23    | 144.64           | 111.06         |

### Various mispredictions and a 2.76 TeV/A preliminary

| Experiment                | Ratio                                                     | Δ      | σ    | Deviation $\sigma$ | Error integral |
|---------------------------|-----------------------------------------------------------|--------|------|--------------------|----------------|
| $158  { m GeV}  { m SPS}$ | $\overline{\Lambda}/\Lambda$                              | -0.235 | 0.13 | 1.85               | 0.06           |
| 158  GeV SPS              | <u>=</u> -/=                                              | -0.22  | 0.14 | 1.57               | 0.12           |
| 158 GeV SPS               | $\overline{\Omega}/\Omega$                                | -0.24  | 0.18 | 1.33               | 0.18           |
| $158  { m GeV}  { m SPS}$ | $K^{-}/K^{+}$                                             | -0.18  | 0.14 | 1.28               | 0.20           |
| 200  GeV SPS              | $\overline{\Lambda}/\overline{p}$                         | 0.32   | 0.29 | 1.10               | 0.27           |
| 200 GeV SPS               | $(\Omega + \overline{\Omega})/(\Xi^- + \overline{\Xi^-})$ | 0.52   | 0.42 | 1.24               | 0.22           |
| 200 GeV SPS               | $\overline{\Lambda}/\Lambda$                              | -0.20  | 0.15 | 1.33               | 0.18           |
| 130 GeV RHIC              | $\overline{\Lambda}/\Lambda$                              | 0.12   | 0.08 | 1.50               | 0.13           |
| 200 GeV RHIC              | $\overline{p}/p$                                          | 0.24   | 0.16 | 1.50               | 0.13           |
| 200 GeV RHIC              | $K^{-}/\pi^{-}$                                           | -0.46  | 0.16 | 2.88               | 0.004          |

| Experiment    | Ratio                  | Δ     | σ    | Deviation/ $\sigma$ |
|---------------|------------------------|-------|------|---------------------|
| 200  GeV RHIC | $K^-/\pi^-$            | -0.11 | 0.16 | 0.69                |
| 200  GeV RHIC | $\overline{p}/\pi^{-}$ | 0.09  | 0.16 | 0.57                |

|                 | Year-1987         | Model 5       | Model 7   | Model 9  | Model 11          | Model 7 |
|-----------------|-------------------|---------------|-----------|----------|-------------------|---------|
| Note            | 14.5 GeV fixed t. | fragmentation | favourite | hadronic | enh.fragmentation | S/N=75  |
| $K^{+}/\pi^{+}$ | 0.24              | 0.685         | 0.753     | 1.088    | 0.621             | 0.750   |
| $K^{-}/\pi^{-}$ | ≈0                | 0.557         | 0.613     | 0.837    | 0.515             | 0.620   |

| Ratio      | 0.2 TeV, Model 7   | 2.76 TeV, prelimininary<br>measurement | 5.52 TeV, Model 7  |
|------------|--------------------|----------------------------------------|--------------------|
| $K^+/p$    | $2.8 \pm 0.34$     | 3.2                                    | $2.9 \pm 0.49$     |
| $\Xi^-/p$  | $0.078 \pm 0.013$  | 0.12                                   | $0.083 \pm 0.014$  |
| $\Omega/p$ | $0.004 \pm 0.0007$ | 0.02                                   | $0.004 \pm 0.0007$ |

For RHIC energies pions are overabundant; probable reason hadronosation into resonances. It seems that it was cca. 50 % for 200 GeV. For 2.76 TeV  $\Omega$  yield is geometric mean of #7 & #5. Otherwise...

#### PROBLEMS