Non-extensive Boltzmann equation \& thermalization

Miklós Horváth (PhD student)
Supervisor: Tamás Biró

1ㅔㄷㄷㄷ
Zimányi 2012

Content

- Non-extensivity \& kinetic equations
- Motivations
-Toy-model (colliding point-particles)
> Details of kinetics
> Detailed balance no-go
> Numerical results about long-time evolution

Goal:
Long-time behaviour of two-component modified kinetic equations:
\leadsto NESS (Non-equilibrium steady state)

Non-Extensivity

- Why can NOT we just sum up micro-/mesoscopic quantities?

- Pair-interaction in general:

$$
\frac{E}{N}=\frac{1}{N} \sum_{i} E_{i}+\frac{1}{N} \sum_{i j} V_{i j}
$$

- in TDL:

Non-Extensivity

- Why can NOT we just sum up micro-/mesoscopic quantities?

- Pair-interaction in general:
- in TDL:

small: weak interaction (few pairs)

Non-Extensivity

- Why can NOT we just sum up micro-/mesoscopic quantities?

- Pair-interaction in general:
- in TDL:

$$
\frac{E}{N}=\frac{1}{N} \sum_{i} E_{i}+\frac{1}{N} \sum_{i j} V_{i j}
$$

small: weak interaction (few pairs)

$$
\sim N^{\delta-1} \text { big: strong interaction (a lot of pairs) }
$$

Non-Extensivity

(if h is associative):

$$
\begin{gathered}
h\left(E, E^{\prime}\right)=K \Rightarrow L(E)+L\left(E^{\prime}\right)=L(K)=\text { const } . \\
L(E)=\int_{0}^{E} \frac{\mathrm{~d} \epsilon}{\partial_{2} h(\epsilon, 0)}
\end{gathered}
$$

Kinetic equations

$$
\dot{f}_{1}^{\alpha}=\sum_{\beta} \iiint_{234} \mathcal{W}_{1234}^{\alpha \beta}\left(f_{3}^{\alpha} f_{4}^{\beta}-f_{1}^{\alpha} f_{2}^{\beta}\right)
$$

- symmetries:

$$
\begin{gathered}
1234 \leftrightarrow 3412,1234 \leftrightarrow 2134 \\
\alpha \beta \leftrightarrow \beta \alpha
\end{gathered}
$$

- constraints: 2-p. (quasi-)energy, 2-p. total momentum

$$
\mathcal{W}_{1234}^{\alpha \beta}=\omega_{1234}^{\alpha \beta} \delta\left(h\left(E_{1}, E_{2}\right)-h\left(E_{3}, E_{4}\right)\right) \delta^{(3)}\left(\mathbf{p}_{1}+\mathbf{p}_{2}-\mathbf{p}_{3}-\mathbf{p}_{4}\right)
$$

- conserving quantities:
total momentum, number of particles

Kinetic equations

$$
\dot{f}_{1}^{\alpha}=\sum_{\beta} \iiint_{234} \mathcal{W}_{1234}^{\alpha \beta}\left(f_{3}^{\alpha} f_{4}^{\beta}-f_{1}^{\alpha} f_{2}^{\beta}\right)
$$

- symmetries:

$$
1234 \leftrightarrow 3412, \quad 1234 \leftrightarrow 2134
$$

$$
\alpha \beta \leftrightarrow \beta \alpha
$$

- constraints:	2-p. (quasi-)energy,	
$\mathcal{W}_{1234}^{\alpha \beta}=\omega_{123}^{\alpha \beta}$	$\left.\begin{array}{l}\text { 2-p. total momentym } \\ \delta\left(h\left(E_{1}, E_{2}\right)-h\left(E_{3}, E_{4}\right)\right.\end{array}\right)$	$\begin{array}{l}(3) \\ \left.\mathbf{p}_{1}+\mathbf{p}_{2}-\mathbf{p}_{3}-\mathbf{p}_{4}\right)\end{array}$

- conserving quantities:
total momentum, number of particles

Kinetic equations

$$
\dot{f}_{1}^{\alpha}=\sum_{\beta} \iiint_{234} \mathcal{W}_{1234}^{\alpha \beta}\left(f_{3}^{\alpha} f_{4}^{\beta}-f_{1}^{\alpha} f_{2}^{\beta}\right)
$$

- symmetries:

$$
\begin{gathered}
1234 \leftrightarrow 3412,1234 \leftrightarrow 2134 \\
\alpha \beta \leftrightarrow \beta \alpha
\end{gathered}
$$

- conserving quantities:
total momentum, number of particles

Kinetic equations \& entropy growth

$$
S=-\sum_{\alpha} \int_{1} f_{1}^{\alpha} \ln f_{1}^{\alpha}
$$

- H-theorem: S is increasing monotonically
- approaches its maximum in detailed balance (if exists):

$$
\begin{aligned}
f^{\alpha}\left(E_{1}\right) f^{\beta}\left(E_{2}\right) & =f^{\alpha}\left(E_{3}\right) f^{\beta}\left(E_{4}\right) \\
L^{\alpha \beta}\left(E_{1}\right)+L^{\alpha \beta}\left(E_{2}\right) & =L^{\alpha \beta}\left(E_{3}\right)+L^{\alpha \beta}\left(E_{4}\right)
\end{aligned}
$$

Motivations

- power law tails in spectra
- not independent collisions in dense plasma
- modified dispersion relation

Motivations

- power law tails in spectra
- not independent collisions in dense plasma
- modified dispersion relation

A toy-model - construction

- particles

$$
\left\{E_{i}, \mathbf{p}_{i}, \alpha_{i}\right\}
$$

- interaction via binary collisions
- dispersion relation:

$$
E=c|\mathbf{p}|^{n}
$$

- collisional invariants:

$$
\begin{aligned}
\mathbf{p}_{1}+\mathbf{p}_{2} & =\mathbf{p}_{3}+\mathbf{p}_{4} \\
h\left(E_{1}, E_{2}\right) & =h\left(E_{3}, E_{4}\right)
\end{aligned}
$$

A toy-model - construction

- particles

$$
\left\{E_{i}, \mathbf{p}_{i}, \alpha_{i}\right\}
$$

- interaction via binary collisions
- dispersion relation:

$$
E=c|\mathbf{p}|^{n}
$$

- collisional invariants:

$$
\mathbf{p}_{1}+\mathbf{p}_{2}=\mathbf{p}_{3}+\mathbf{p}_{4}
$$

$$
E_{1}+E_{2}+a^{\alpha \beta} E_{1} E_{2}=
$$

$$
\stackrel{=}{=} E_{3}+E_{4}+a^{\alpha \beta} E_{3} E_{4}
$$

$E_{1}, \mathbf{p}_{1}, \alpha$

A toy-model - kinetic equation

continuum limit: $\quad\left(N \rightarrow \infty, \Delta\left(E, E^{\prime}, \epsilon\right) \rightarrow 0\right)$

$$
\dot{f}_{1}^{\alpha}=\sum_{\beta} \iiint_{234} \mathcal{W}_{1234}^{\alpha \beta}\left(f_{3}^{\alpha} f_{4}^{\beta}-f_{1}^{\alpha} f_{2}^{\beta}\right)
$$

(Boltzmann-type) kinetic equation

A toy-model - kinetic equation

continuum limit: $\quad\left(N \rightarrow \infty, \Delta\left(E, E^{\prime}, \epsilon\right) \rightarrow 0\right)$

$$
\begin{aligned}
& \qquad \dot{f}_{1}^{\alpha}=\sum_{\beta} \iiint_{234} \mathcal{W}_{1234}^{\alpha \beta}\left(f_{3}^{\alpha} f_{4}^{\beta}-f_{1}^{\alpha} f_{2}^{\beta}\right) \\
& \text { (Boltzmann-type) kinetic equation }
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{W}_{1234}^{\alpha \beta}=\rho^{\alpha \beta}\left(E_{3}, E_{4}, K\right) \delta(\underbrace{h^{\alpha \beta}\left(E_{1}, E_{2}\right)}_{K}-h^{\alpha \beta}\left(E_{3}, E_{4}\right)) \delta^{(3)}\left(\mathbf{p}_{1}+\mathbf{p}_{2}-\mathbf{p}_{3}-\mathbf{p}_{4}\right) \\
& \dot{f}^{\alpha}(E)=\sum_{\beta} \int_{0}^{\Lambda} \mathrm{d} E^{\prime} \int_{0}^{K} \mathrm{~d} \epsilon\left(f^{\alpha}(\epsilon) f^{\beta}(K \ominus \epsilon)-f^{\alpha}(E) f^{\beta}\left(E^{\prime}\right)\right) \rho^{\alpha \beta}
\end{aligned}
$$

A toy-model - kinetic equation

continuum limit: $\quad\left(N \rightarrow \infty, \Delta\left(E, E^{\prime}, \epsilon\right) \rightarrow 0\right)$

$$
\dot{f}_{1}^{\alpha}=\sum_{\beta} \iiint_{234} \mathcal{W}_{1234}^{\alpha \beta}\left(f_{3}^{\alpha} f_{4}^{\beta}-f_{1}^{\alpha} f_{2}^{\beta}\right)
$$

(Boltzmann-type) kinetic equation

$$
\begin{aligned}
& \mathcal{W}_{1234}^{\alpha \beta}=\rho^{\alpha \beta}\left(E_{3}, E_{4}, K\right) \delta(\underbrace{\sqrt{\alpha \beta}\left(E_{1}, E_{2}\right)}_{K}-h^{\alpha \beta}\left(E_{3}, E\right)) \delta^{(3)}\left(\mathbf{p}_{1}+\mathbf{p}_{2}-\mathbf{p}_{3}-\mathbf{p}_{4}\right) \\
& \text { modified } \\
& \dot{f}^{\alpha}(E)=\sum_{\beta} \int_{0}^{\Lambda} \mathrm{d} E^{\prime} \int_{0}^{K} \mathrm{~d} \epsilon\left(f^{\alpha}(\epsilon) f^{\beta}(K \ominus \epsilon)-f^{\alpha}(E) f^{\beta}\left(E^{\prime}\right)\right) \rho^{\alpha \beta}
\end{aligned}
$$

A toy-model-simulation

Numerical implementation:

- ensemble described by $\left\{\left(\mathbf{p}_{i}, E_{i}=c|\mathbf{p}|^{n}\right), i=1 \ldots N\right\}$
- collision-by-collision evolution, NOT in real time
- random sampling on the constrained phase space
- random variables:
$\rightarrow 1$ outgoing energy
\rightarrow angle between incoming \& outgoing planes

A toy-model-simulation

A toy-model-simulation

A toy-model - detailed balance

A toy-model - detailed balance

$$
\begin{gathered}
\dot{f}_{1}^{\alpha}=\sum_{\beta} \iiint_{234} \underbrace{\mathcal{W}_{1234}^{\alpha \beta}\left(f_{3}^{\alpha} f_{4}^{\beta}-f_{1}^{\alpha} f_{2}^{\beta}\right)}_{=0} \\
f^{\alpha}\left(E_{1}\right) f^{\beta}\left(E_{2}\right)=f^{\alpha}\left(E_{3}\right) f^{\beta}\left(E_{4}\right) \\
L^{\alpha \beta}\left(E_{1}\right)+L^{\alpha \beta}\left(E_{2}\right)=L^{\alpha \beta}\left(E_{3}\right)+L^{\alpha \beta}\left(E_{4}\right)
\end{gathered}
$$

$n+n(n-1) / 2$ independent equations

A toy-model - detailed balance

$$
\text { for } \begin{aligned}
\alpha=\beta \quad \begin{aligned}
f^{\alpha}\left(E_{1}\right) f^{\alpha}\left(E_{2}\right) & =f^{\alpha}\left(E_{3}\right) f^{\alpha}\left(E_{4}\right) \\
L^{\alpha \alpha}\left(E_{1}\right)+L^{\alpha \alpha}\left(E_{2}\right) & =L^{\alpha \alpha}\left(E_{3}\right)+L^{\alpha \alpha}\left(E_{4}\right)
\end{aligned} \\
\longrightarrow \quad f^{\alpha} \sim e^{-\gamma_{\alpha \alpha} L^{\alpha \alpha}(E)}
\end{aligned}
$$

A toy-model - detailed balance

$$
\text { for } \alpha=\beta \quad \begin{gathered}
f^{\alpha}\left(E_{1}\right) f^{\alpha}\left(E_{2}\right)=f^{\alpha}\left(E_{3}\right) f^{\alpha}\left(E_{4}\right) \\
L^{\alpha \alpha}\left(E_{1}\right)+L^{\alpha \alpha}\left(E_{2}\right)=L^{\alpha \alpha}\left(E_{3}\right)+L^{\alpha \alpha}\left(E_{4}\right)
\end{gathered}
$$

$\gamma_{\alpha \alpha} L^{\alpha \alpha}\left(E_{1}\right)+\gamma_{\beta \beta} L^{\beta \beta}\left(E_{2}\right)=\gamma_{\alpha \alpha} L^{\alpha \alpha}\left(E_{3}\right)+\gamma_{\beta \beta} L^{\beta \beta}\left(E_{4}\right)$

A toy-model - detailed balance

$$
\begin{gathered}
\text { for } \alpha=\beta \quad f^{\alpha}\left(E_{1}\right) f^{\alpha}\left(E_{2}\right)=f^{\alpha}\left(E_{3}\right) f^{\alpha}\left(E_{4}\right) \\
L^{\alpha \alpha}\left(E_{1}\right)+L^{\alpha \alpha}\left(E_{2}\right)=L^{\alpha \alpha}\left(E_{3}\right)+L^{\alpha \alpha}\left(E_{4}\right) \\
f^{\alpha}\left(E_{1}\right) f^{\beta}\left(E_{2}\right)=f^{\alpha}\left(E_{3 \alpha}\right) f^{\beta \alpha}\left(E_{4}\right) \\
\gamma_{\alpha \alpha} L^{\alpha \alpha}\left(E_{1}\right)+\gamma_{\beta \beta} L^{\beta \beta}\left(E_{2}\right)=\gamma_{\alpha \alpha} L^{\alpha \alpha}\left(E_{3}\right)+\gamma_{\beta \beta} L^{\beta \beta}\left(E_{4}\right) \\
\text { AND for } \alpha \neq \beta \\
L^{\alpha \beta}\left(E_{1}\right)+L^{\alpha \beta}\left(E_{2}\right)=L^{\alpha \beta}\left(E_{3}\right)+L^{\alpha \beta}\left(E_{4}\right)
\end{gathered}
$$

A toy-model

$\mathrm{d}=3, \mathrm{n}=2$: closed curves

A toy-model

Lot of constraints...

$$
L^{\alpha \beta}\left(E_{1}\right)+L^{\alpha \beta}\left(E_{2}\right)=L^{\alpha \beta}\left(E_{3}\right)+L^{\alpha \beta}\left(E_{4}\right) \quad \alpha, \beta=1 \ldots n
$$

cannot be fulfilled for every pairs

detailed balance does not exist

no global conservations

Long time behaviour?

A toy-model - numerical results

- collisional invariants:

$$
E_{1}+E_{2}+\frac{a^{\alpha \beta}}{\langle E\rangle^{n}} E_{1} E_{2}=E_{3}+E_{4}+\frac{a^{\alpha \beta}}{\langle E\rangle^{n}} E_{3} E_{4}
$$

- scaling distributions (NESS): $f^{\alpha}(E)=\frac{1}{\langle E\rangle} \phi(E /\langle E\rangle)$

$$
\phi(x) \sim(1+A x)^{-B}
$$

A toy-model - numerical results

- collisional invariants:

$$
E_{1}+E_{2}+\frac{a^{\alpha \beta}}{\langle E\rangle^{n}} E_{1} E_{2}=E_{3}+E_{4}+\frac{a^{\alpha \beta}}{\langle E\rangle^{n}} E_{3} E_{4}
$$

- scaling distributions (NESS): $f^{\alpha}(E)=\frac{1}{\langle E\rangle} \phi(E /\langle E\rangle)$

A toy-model - numerical results

- scaling distributions: $\langle E\rangle f^{\alpha}(E)=\phi(E /\langle E\rangle)$

A toy-model - numerical results

- scaling distributions: $\langle E\rangle f^{\alpha}(E)=\phi(E /\langle E\rangle)$

A toy-model - numerical results

- scaling distributions: $\langle E\rangle f^{\alpha}(E)=\phi(E /\langle E\rangle)$

A toy-model-a~1/<E>

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\langle E\rangle=\sum_{\alpha} \int_{0}^{\Lambda} \mathrm{d} E \dot{\dot{f}^{\alpha}}(E) E=\langle E\rangle \sum_{\alpha \beta} I^{\alpha \beta}
$$

A toy-model-a~1/<E>

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} \tau}\langle E\rangle=\sum_{\alpha} \int_{0}^{\Lambda} \mathrm{d} E \dot{f}^{\alpha}(E) E=\langle E\rangle \sum_{\alpha \beta} I^{\alpha \beta} \\
& \text { led out: no time dependence } \quad \Longrightarrow\langle E\rangle \sim e^{\gamma \tau}
\end{aligned}
$$

A toy-model-a~1/<E>

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\langle E\rangle=\sum_{\alpha} \int_{0}^{\Lambda} \mathrm{d} E \dot{f}^{\alpha}(E) E=\langle E\rangle \sum_{\alpha \beta} I^{\alpha \beta}
$$

$$
\langle\mathrm{E}\rangle \text { scaled out: no time dependence } \quad\left\langle\langle E\rangle \sim e^{\gamma \tau}\right.
$$

A toy-model-a~1/<E>

$$
S_{e n}=-\sum_{\alpha} \int_{0}^{\Lambda} \mathrm{d} E f^{\alpha}(E) \ln f^{\alpha}(E)=\text { const. }+\ln (\langle E\rangle)
$$

A toy-model-a~1/<E>

Conclusions \& summary

- Simple kinetic toy-model with non-additive coll. invariants:
- two (or more) component: frustration (disapeasis continuousy)
(balance states will be different for each component)
- no detailed balance, but NESS in long time
-thermal description: heating system (driving)
- stable equation of states
- Motivation for energetically non-extensive models: -dense plasmas, -dealing with >2-part. collisions in a mean-field way

Acknowledgement

- Antal JAKOVÁC (Eötvös University)
- Péter VÁN (Wigner RCP)
- Károly ÜRMÖSSY (Wigner RCP)

Thank you for your attention!
 Questions?

