BGV detector design studies

Plamen Hopchev CERN BE-BI

BGV meeting

7 December 2012

Number of reconstructed tracks and stat. precision

- \bullet The requirement to have at least X tracks per reconstructed vertex has relation both to:
 - The statistical precision of the measured $\sigma_{\rm beam}$ / the gas pressure
 - The primary vertex (PV) resolution (and the related systematic error)

Rate of inelastic beam-gas interactions per bunch:

$$R_{\text{inel}} = \int_{z=z_1}^{z=z_2} \rho(z) \, dz \cdot \sigma_{\text{pA}}(E) \cdot N \cdot f_{\text{rev}}$$

- Not all inelastic events will be useful
- ullet The vertex resolution will be sufficiently good only for events with at least $N_{
 m Tr}$ reconstructed tracks. The fraction of these events, $F_{
 m good}$, depends on:
 - the geometrical distributions (η) of the beam-gas interaction products
 - the geometrical distributions (η) of the beam-gas interaction products
 - the detector geometry
- $N_{
 m good} = R_{
 m inel} \, \Delta t \, F_{
 m good}$ determines the statistical precision of the measured $\sigma_{
 m beam}$: $\frac{\delta \sigma_{
 m beam}}{\sigma_{
 m beam}} = \frac{1}{\sqrt{2 \, N_{
 m good}}}$
- ullet The knowledge of $F_{
 m good}$ is essential in the detector + gas-target design

Number of reconstructed tracks and PV resolution

- As discussed previously, the primary vertex (PV) resolution in a given event depends on the number of measured tracks
- Assuming that all tracks in the event have the same impact parameter (IP) resolution $\sigma_{\rm IP}$, the PV resolution scales approximately as $\sigma_{\rm IP}/\sqrt{N_{\rm Tr}}$
 - \bullet N_{Tr} : number of tracks making up the vertex
 - Many effects: different track p_T , different z_{vtx} , ...

Reminder of the IP definition and formulas:

The impact parameter resolution is determined by:

• $\sigma_{\rm extrap}$ – IP induced by detector hit resolution

$$\sigma_{\mathrm{IP}}^2 = \sigma_{\mathrm{MS}}^2 + \sigma_{\mathrm{extrap}}^2$$

depend on the radial position

In each transverse coordinate:

$$\sigma_{\rm MS} = r_1 \, \frac{13.6 \, {\rm MeV}}{p_T} \, \sqrt{\frac{x}{X_0}} \, \left(1 + 0.038 \, \log \frac{x}{X_0}\right) \approx r_1 \, \frac{13.6 \, {\rm MeV}}{p_T} \, \sqrt{\frac{x}{X_0}}$$

$$\sigma_{\rm extrap} = \sqrt{\frac{z_2^2 \, \sigma_1^2 + z_1^2 \, \sigma_2^2}{(z_2 - z_1)^2} \, \cos^2 \theta} \quad \text{for and } \sigma_2 \text{ are the detector hit resolutions, which in principle can depend on the radial position.}$$

Average charged particle multiplicities

- \bullet The average number of charged particles produced in pp collisions have been measured by different experiments at different center-of-mass energy \sqrt{s} \bullet Later I refer to this number as $< N_{\rm Tr} >$
 - Different parametrizations exist as f(s). E.g.:
 - $\bullet < N_{
 m Tr} > (s) = A + B/\sqrt{s} + C \ln s$ [Tow; Phys.Rev.D7 (1973) 3535]
- ullet To-do: make comparisons with experimental data of pA collisions
- Generated beam-gas interactions with PYTHIA (target = H) and HIJING (target = H, O or Xe), using the LHCb computing framework
 - \bullet Compare $< N_{\rm Tr} >$ in the simulated samples with the parametrizations based on experimental data

Distribution of $N_{ m Tr}$

- For different √s the distributions of N_{Tr} are different (larger energy ⇒ larger < N_{Tr} >)
 However, it was found that the distribution
 - of $< N_{\mathrm{Tr}} > \frac{\sigma_{\mathrm{n}}}{\sigma_{\mathrm{inel}}}$ vs $\frac{N_{\mathrm{Tr}}}{< N_{\mathrm{Tr}} >}$ does not depend on \sqrt{s} , at least in the \sqrt{s} range we are interested in $(29-114~\mathrm{GeV})$.
 - σ_n is the so-called "topological" cross-section: cross-section for an interaction to produce exactly n charged particles.
- ullet For a fixed \sqrt{s} we can use the parametrization of this distribution to determine the fraction of events producing at least n tracks
 - This is our expectation, which we compare with the results from the MC generated samples

Fraction of events with at least X tracks

- hi/py : Hijing or Pythia MC generators
- ► 1/8/54: H or O or Xe target
- ► 450/7000: beam energy in GeV

- ullet The step-like behavior in the pH samples is attributed to el. charge conservation
- The agreement between PYTHIA and HIJING in not so good (elastic interactions!)
- The agreement between the expectation and the MC samples is not so bad
- Overall, acceptable agreement between MC simulation and parametrization based on real data

η distributions & detector acceptance (1)

- These were results for all charged particles (indep. of detector acceptance)
 In practice we care about the number of charged particles in detector acceptance
 - In practice we care about the number of charged particles in detector acceptance
- The pseudorapidity distributions are close to Gaussian; Examples with Hijing, H, 450/7000 GeV:

 Next, compare the fitted Gaussians mean and width for different targets and energy

η distributions & detector acceptance (2)

- ullet The rectangles represent the η coverage of the *Large* and *Small* detectors.
 - \bullet For each detector type, two rectangles show the coverage for $z_{min}~(-0.5~{\rm m})$ and $z_{max}~(0.5~{\rm m})$
- "Kinematics": Calculate boost assuming a **rigid** target. The velocity of the center-of-mass in the lab frame is: $\beta_{cm} = p_1^{lab}/(E_1^{lab} + m_2)$. Under a boost in the z-direction to a frame with velocity β : $y \to y tanh^{-1}\beta$
 - Good agreement for Hydrogen; For heavier targets, the MC simulation results are somewhere between a rigid target and a single-nucleon target

Detector geometries used in toy MC simulations

- Both detectors:
 - 4 x + y measuring layers, located at z = 1984.0, 2317.3, 2650.7, and 2984.0 mm (z = 0is the center of the gas target) 1 mm thick exit window
 - beam pipe with inner/outer radius of 19/20 mm
- Large detector: covers 20 < r < 350 mm
- ullet Small detector: made of 100×100 mm sensors on the left/right of the beam pipe

Fraction of events with at least X tracks in Acceptance

- Reminder: $F_{\rm good}$ and the gas pressure determine the time needed to achieve certain statistical precision on the measured $\sigma_{\rm beam}$
- \bullet $F_{\rm good}$ itself depends on several parameters, including detector geometry and cut on $N_{\rm Tr}$

Fraction of events with at least \boldsymbol{X} tracks in Acceptance

ullet Check the effect on F_{good} from using heavier targets

PV resolution

 \bullet Determine PV resolution as function of the cut on $N_{\rm Tr},$ using the toy MC detector simulation tool

- These are 7 TeV H collisions. The results at 450 GeV are very similar
- However, we see a significant difference with the two detectors: the small one is more precise in x and y, and less precise in z
 - ullet We attribute this difference to the different average η of the measured tracks: lower η tracks provide better constraint on the transverse coordinates. A calculation is needed for confirmation

Design scheme

Fix stat. precision (5 % per bunch) and time (3 min) \rightarrow need \sim 1 Hz per bunch. Determine needed pressure, given certain F_{good} \rightarrow see Massi's talk

Vertex resolution

systematic: $\delta \sigma$

$$\frac{\delta \sigma_{\mathrm{beam}}}{\sigma_{\mathrm{beam}}} = \frac{\sigma_{\mathrm{res}}^2}{\sigma_{\mathrm{beam}}^2} \cdot \frac{\delta \sigma_{\mathrm{res}}}{\sigma_{\mathrm{res}}}$$

- \bullet Note that certain properties (e.g. detector η coverage) have implications both on the stat. and syst. precisions
- It is a complex inter-connected system: fixing parameters like r_{pipe} and beam size (optics β) will facilitate greatly the identification of an optimal design

Design scheme

Fix stat. precision (5 % per bunch) and time (3 min) \rightarrow need \sim 1 Hz per bunch. Determine needed pressure, given certain F_{good} \rightarrow see Massi's talk

systematic: $\delta \sigma_{\text{beam}} = \sigma_{\text{ex}}^2$

 $\frac{\delta \sigma_{\rm beam}}{\sigma_{\rm beam}} = \frac{\sigma_{\rm res}^2}{\sigma_{\rm beam}^2} \cdot \frac{\delta \sigma_{\rm res}}{\sigma_{\rm res}}$

- Why a measurement at 7 TeV is more challenging than at 0.45 TeV:
- \bullet When we go from 7 TeV (where low $\sigma_{\rm res}$ is the challenging requirement) to 450 GeV:
 - \bullet F_{good} decreases significantly, but if we choose lower N_{Tr} cut (3/4/5 ?) then:
 - F_{good} gets larger by about a factor of 10 (2.5) for small (large) detector, in comparison to 7 TeV \rightarrow can operate at lower pressure
 - $\sigma_{\rm res}$ increases by about a factor of 1.5, but the ratio $(\sigma_{\rm res}/\sigma_{\rm beam})^2$ gets 7 times smaller!

Additional Slides

Definition of charged particles multiplicity

Default definition

- Count as charged particles all generated particles that:
 - 1. Have electric charge $= \pm 1$
 - 2. Are produced at most 5 mm away from the PV (distance in z)
 - 3. Have no decay vertices or have exactly 1 decay vertex, which is located at least 10 mm away from the PV (distance in z)

Alternative definition

- Count as charged particles all generated particles that:
 - 1. Same as above
 - 2. Same as above
 - 3. Have no decay vertices or have exactly 1 decay vertex, and the distance between the end and origin vertex is at least 2 m (distance in z)
- ullet Both definitions give the same results within 1 %. The reason is that there are very few particles that have decay length between 10 mm and 2 m $(K_S,\Lambda,?)$

Distribution of charged particles multiplicity (1)

- 4 generated samples: Hijing/Pythia; Hydrogen; 450/7000 GeV
 no selection cuts
 - o no selection cut

Distribution of charged particles multiplicity (2)

- 4 generated samples: Hijing; Oxygen/Xenon; 450/7000 GeV
 no selection cuts
 - 110 Selection cuts

Geometry definition: *Large* detector

• x and y hit resolution = 58 μ m

```
# typ ODW IDH L posx posy posz
                                            X0
  exit window (very short large diameter tube)
  1 700.0 40.0
                  1.0 0.0 0.0 1980.0 89.0
  beam pipe (long small diameter tube)
  1 40.0 38.0 1200.0 0.0 0.0 2580.0 89.0
# first plane of XY sensors (4 rectangles) covering 20 <= r <= 350 mm
  2 370.0 330.0 1.0 165.0 185.0 1984.0 93.0
  2 330.0 370.0 1.0 185.0 -165.0 1984.0 93.0
  2 370.0 330.0 1.0 -165.0 -185.0 1984.0 93.0
  2 330.0 370.0 1.0 -185.0 165.0 1984.0 93.0
# second plane of XY sensors (4 rectangles) covering 20 <= r <= 350 mm
  2 370.0 330.0 1.0 165.0 185.0 2317.3 93.0
  2 330.0 370.0 1.0 185.0 -165.0 2317.3 93.0
  2 370.0 330.0 1.0 -165.0 -185.0 2317.3 93.0
  2 330.0 370.0 1.0 -185.0 165.0 2317.3 93.0
 third plane of XY sensors (4 rectangles) covering 20 <= r <= 350 mm
  2 370.0 330.0 1.0 165.0 185.0 2650.7 93.0
  2 330.0 370.0 1.0 185.0 -165.0 2650.7 93.0
  2 370.0 330.0 1.0 -165.0 -185.0 2650.7 93.0
  2 330.0 370.0 1.0 -185.0 165.0 2650.7 93.0
 fourth plane of XY sensors (4 rectangles) covering 20 <= r <= 350 mm
  2 370.0 330.0 1.0 165.0 185.0 2984.0 93.0
  2 330.0 370.0 1.0 185.0 -165.0 2984.0 93.0
  2 370.0 330.0 1.0 -165.0 -185.0 2984.0 93.0
  2 330.0 370.0 1.0 -185.0 165.0 2984.0 93.0
```


Geometry definition: Small detector

X0

• x and y hit resolution = 58 μ m

typ ODW IDH L posx posy posz

```
exit window (very short large diameter tube)
  1 700.0 40.0
                    1.0 0.0 0.0 1980.0 89.0
  beam pipe (long small diameter tube)
  1 40.0 38.0 1200.0 0.0
                                0.0 2580.0 89.0
# first plane of XY sensors: one rectangle (10x10 cm) on the left/right of the beam
  2 100.0 100.0 1.0 70.0
                             0.0 1984.0 93.0
  2 100.0 100.0 1.0 -70.0
                             0.0 1984.0 93.0
 second plane of XY sensors: one rectangle (10x10 cm) on the left/right of the bea
  2 100.0 100.0 1.0 70.0 0.0 2317.3 93.0
  2 100.0 100.0 1.0 -70.0
                             0.0 2317.3 93.0
 third plane of XY sensors: one rectangle (10x10 cm) on the left/right of the beam
  2 100.0 100.0 1.0 70.0 0.0 2650.7 93.0
  2 100.0 100.0 1.0 -70.0 0.0 2650.7 93.0
# fourth plane of XY sensors: one rectangle (10x10 cm) on the left/right of the bea
  2 100.0 100.0 1.0 70.0 0.0 2984.0 93.0
  2 100.0 100.0 1.0 -70.0 0.0 2984.0 93.0
```


PV reconstruction: η distributions

• 0.45 TeV Hydrogen collision

Detector Type	$N_{\rm Tr} > X$	$ < \eta >$
	4	3.90
Large	5	3.92
	6	3.91
Small	4	4.57
	5	4.53
	6	4.56

PV reconstruction: p_T distributions

• 0.45 TeV Hydrogen collision

Detector Type	$N_{\mathrm{Tr}} > X$	$< p_T > [MeV]$
Large	4	366.2
	5	365.4
	6	358.2
Small	4	345.6
	5	350.8
	6	324.8

PV reconstruction: z position of reconstructed vertices

450 GeV Hydrogen collision

PV reconstruction: z position of reconstructed vertices

7 TeV Hydrogen collision

