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Introduction

Trace dynamics at Large N

@ According to general lore, in the large N limit the gauge
theory path integral may be rewritten as

/Hme(X) exp {_NZS(Pm)}
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Introduction

Trace Dynamics from Supergravity

@ Evolution equations of 10d bulk fields elegant and local.
Map to unfamiliar, nonlocal and complicated looking
evolution equations for p,(x, t).

o
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Introduction

Universal Sector

o

@ Every such theory admits a consistent truncation to
Einstein gravity with a negative cosmological constant. All
fields other than the Einstein frame graviton are simply set
to their background AdS, 1 values under this truncation.

o
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Introduction

Einstein’s Equations imply Navier Stokes

@ Thus Einstein Equations (1915) — Navier Stokes
equations (1822), adding to the list of connections
uncovered by string theory between classic but apparently
unrelated equations of physics.
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Spacetimes dual to boundary fluid flows

Boosted Black Branes

R d(d—1
Ry, —EQMN:¥QMNZ - MN=1...d+1

Simplest soln : AdS,. 1 space

2 dr2 2 LAY
ds :r—2+r guwaxtax”; pu,v=1...d

( 9. = constant boundary metric). Another solution: black
brane at temperature T and velocity u,,

ar? ) ,
ds® = 27 + r2P,, dxtdx” — r?f(r)u,u, dx*dx
4rT\¢
f(f):1— dr : Puuzguu+uyuy
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Spacetimes dual to boundary fluid flows

u,(x) and T(x)

@ The boundary stress tensor for the boosted black brane is
1 47\ @
Tuw = KT (g )i K= —— (=
p (Gja -+ AU ) 167 Gy 1 ( d )
@ Note that
T (x) = K'T(x)u"(x), K =(1-dK

(u* is the unique timelike eigenvector).

@ We will use this equation to define the velocity and
temperature field of any locally asymptotically AdS solution
of Einsteins equations. Simple physical interpretation.
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Spacetimes dual to boundary fluid flows

Our Question

@ If ¢(x) < 1then T,,(x), g,.(x) ‘slowly varying’ (vary on
length scales large comp to the equilibriation length, 7).
°

@ Address this question: perturbatively construct families of
(we conjecture all) ‘slowly varying’ bulk spacetimes.
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Spacetimes dual to boundary fluid flows

The tubewise approximation

@ Naive guess: lines of constant x* in Schwarschild (Graham
Fefferman) coordinates, i.e. metric approximately

ds® = rzc;r(zr) + 2P, (x)dx*(x)dx” (x) — r?f(r)u,u,dx*dx”
d
(=1 (T570) 0 P =00 + U0

]
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Spacetimes dual to boundary fluid flows

Penrose diagram

Singularity

ington
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Tubg
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Spacetimes dual to boundary fluid flows

Zero order metric

ds® = g\ dxMaxN = —2u, (x)dx"dr + r?P,,(x)dx" dx”
— r2f(r, T(X))uu(x) U, (x)dx* dx”
@ Metric generally regular but not solution to Einstein’s
equations. However solves equations for constant

ut, T, g,.,. Consequntly appropriate starting point for a
perturbative soln of equations in the parameter ¢(x).
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Spacetimes dual to boundary fluid flows

Perturbation Theory: Redn to ODEs

9uN = g,(\%(ex) + eg,(\J,,z,(eX) + ezg,(\j,z,(ex) .

@ Perturbation expansion surprisingly simple to implement.
Nonlinear partial differential equation — 15 ordinary
differential equations, in the variable r at each order and
each boundary point.
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Spacetimes dual to boundary fluid flows

Perturbation Theory: Constraint Equations

@ The constraint equations at n” order are independent of
g\ they are Vo T 0" = 0, where T} V) = 0 is the
boundary stress tensor dual to the solution upto (n — 1)
order.
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Spacetimes dual to boundary fluid flows

Perturbation Theory: Dynamical Equations

@ It turns out to be possible to exactly solve the equation
M g(" = s(" for an arbitrary source function s("). For any
given source function s” there is a family of solutions to the
equation (which differ by solutions of the homogeneous
equation M g = 0)
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Spacetimes dual to boundary fluid flows

Perturbation Theory: Uniqueness of Solns

@ That the solution is dual to the specified boundary metric
9. (x), velocity field u,(x) and the temperature T(x).
(condition on the large r behaviour of the solution).

@ That the solution is regular at the zeroth order horizon

(condition at r = 4Z7T)
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Spacetimes dual to boundary fluid flows

Perturbation Theory: Navier Stokes Equations

@ Recall that the constraint equations are V# T, = 0. But
this equation, together with the specification of 7, as a
function of derivatives of g,,,,, u, and T has a name: the
(generalized) Navier Stokes equation.
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Spacetimes dual to boundary fluid flows

Perturbation Theory: Summary

@ Requirement of regularity of the horizon ensures this map
is locally one to one in solution space.

]

@ Remaining solutions parameterized by d velocities and
temperatures. Closed dynamical system.

Shiraz Minwalla




Spacetimes dual to boundary fluid flows

Explicit Results at second order

We have explicitly implemented our perturbation theory to
second order.

ds® = —2u,dx” (dr + r A,dx") + rég,, dx"dx”

1 1
A A A
— [wu Wiy + E'D)\w (nUyy — d_ZD)\O' (uUp)

R

1 v

+(d—1)(d—2)u"u”] dx*" ax
1T 5 1

I

Wasw™ YUy, Uy, dxt dx”
+ 2(br)2F(br) [ ouw + F(br)o, O')\V] dx*adx" .
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Spacetimes dual to boundary fluid flows

Explicit Results at second order

u,uy aagao‘ﬂ

(br)d=2(d —1)

_ 2(br)200‘5" P, Ki(br) —

d_1 Kg(bl’)

2 L(br) A o A o v
i (brya—2 [Pupa" AUy + Py Dao u“] dx”'dx
af
— 2(bf)2H1 (bf) [UA'D)\UWJ + (TM)‘O')\V — %Ppy

+Coonpu®u’ } dx*dx”

+ 2(br)2Hy(br) [UA'D)\O'MV +w Mo — aMAwAV} dx* dx”
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Spacetimes dual to boundary fluid flows

Explicit results at second order

Where
1

_ y a—1
(br) = br Y(yd‘ 1) y i L) /br : §/ 4 Syd 1)

Ho(br) = /boowl y%dy {1 +(d = 1)yF(y) + 2y*F'(y)

r

K1(br)z/00d—§/oo dy yoF ()% Hh(br) = | md
albr) = [ 55 [1- €l DF(©) - 2(d - 1)

- (2(d —1)¢9 — (d - 2)) /:O dy yzF’(y)2]

Spacetimes dual to boundary fluid flows

Second order boundary stress tensor

The dual stress tensor corresponding to this metric is given by
(4rT = b~ 1d)

Tw = P (G + du,uy)

A A A

af
+§O‘ [0'”)\0')\,/ - %P,uy] ‘|‘€CCMOH/5U&U6
_ 1 | s 1
T 161Gab? T An 167Gy bd
m=01—-H()b ; 1=H)b ; & =E(=2nb
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Spacetimes dual to boundary fluid flows

Properties of soln: Stress tensor

5
T = aT%(gu + du,u,) + bT 1o, + T972) ¢S],
i=1
@ ais a thermodynamic parameter. b is related to the
viscosity: we find /s = 1/(4x). ¢; coefficients of the five
traceless symmetric Weyl covariant two derivative tensors
are second order transport coefficients. Values disagree
with the predictions of the Israel Stewart formalism.
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Spacetimes dual to boundary fluid flows

Properties of soln: Weyl covariance

Va ur y
v
d—1
R. Loganayagam . arXiv:0801.3701 [hep-th]

Can use the fact that A4, transforms like a gauge field
under Weyl transformation to define a Weyl covariant
derivative D that acts on a weight w tensor Q/"" as

Dy Qi =VaQ+wAQY
+ [GraAt — KAy — HAN] QS
— [ AY =05 A, — 6 AN QL — ...
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Global Structure and Entropy Current

Event Horizons

@ Need some knowledge of the long time behaviour of the
solution. Sufficient, though far from necessary, to assume
fluid flows that reduce to constant temperature and velocity
at late times. Not very strong assumption. Probably true of
all finite fluctuations about uniform motion in d > 2.
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Global Structure and Entropy Current

Event Horizon in the derivative expansion

@ [t turns out to be simple to construct this event horizon
manifold in the derivative expansion: explicitly

1
r,=—+ b ()\10aﬁ0'a5 —|—)\2waﬁwa5 -+ >\3R) + ...

b
- 2(d? +d—4) K>(1)
T d2d-1)(d-2) dd-1)

d+2 1
YT B B LA o> B T By
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Global Structure and Entropy Current

@ The line element on the event horizon takes the form
ds® = g§"do’do/

Define the area d — 1 form as
a=+/gehda' Ada? ... dad".

@ Now da = ¢d\ A da'...da? 1 The classic area increase
theorem of black hole physics implies the assertion that
¢ > 0.

Shiraz Minwalla

Global Structure and Entropy Current

@ Consequently fluid dynamics dual to gravity is equipped
with a local current whose divergence is always non
negative, and which agrees with the thermodynamic
entropy current in equilibrium. This ‘entropy current’ is a
local ‘Boltzman H’ function whose non negative divergence
rigorously estabilishes the locally irreversable nature of the
dual fluid flows.
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Global Structure and Entropy Current

Entropy Current at second order

Explicitly this entropy current is given to second order by

4Gypq b1 Jo=[1+ b? ( A Jaﬁaaﬁ + Agwaﬁwag + A3 R) | u”
+ b2[81 'D)\O"U)\ + BQD)\CU'U)\]

where

A_E(d+2)_K1(1)d+K2(1) P .

1= g2 d TR T o 2T g2
2

B1="2%= G2
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Rotating Black holes

Rotating Kerr AdS Black holes

@ Labelled by mass plus [d/2] commuting angular momenta.
They are dual to the flow of a conformal fluid on S?—'. The
dual velocity field of these solutions turns out to be that of
rigid rotations. The temperature field is also simple, but |
do not describe it.
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Rotating Black holes

Rotating Black Holes from Fluid Dynamics

Upon transforming these exact solutions into our fluid
dynamical gauge g, = 0, gr, = —U,, they take a very simple
form

ds?® = —2u,dx" (dr +r A,dx") + r?g,, dx"dx"

1 1
B A
o g P W T a1 d - 2)

reu,u,
bddet [r o — wh]

Ru,u, | dx*dx”

ax*dx”

Shiraz Minwalla

Rotating Black holes

@ The perturbative second order fluid dynamical stress
tensor is exact to all orders for all these solutions.

@ The perturbative second order construction of the bulk
metric is also exact for the special case of the
Schwarzschild (non rotating) metric black hole.

@ In the general case the exact metric may be expanded in
the derivative expansion. This expansion contains terms of
all orders. The expansion is convergent; outside the
horizon the radius of convergence is ~ T. Truncating to
second order we find perfect agreement with our
perturbative results. Similarly for entropy. construction to
second order. Similar statement for entropy.

Shiraz Minwalla




Two Generalizations

Forcing and Charges

@ Additional fields of two sorts. Bulk gauge fields that
correspond to conserved boundary charge. Plus all others.

*]
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Two Generalizations

Dilaton Forcing

]

@ Long wavelength solution of the Einstein dilaton system
with a given specified slowly varying boundary dilaton field
may be obtained by perturbation theory analogeous to
above. Have been explicitly constructed to second order.

(rT)°

THY — _
Vi 167 G5

VVo(u.0)p + ...
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Two Generalizations

Simple Solutions

daT _ (¢)?

dt  12n
The dual bulk solution has a dilaton pulses falling into the
black hole, and at leading order is the Vaidya solution.
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Two Generalizations

The Einstein Maxwell System

@ Can set up perturbation theory to determine the most
general long wavelength solution for this system. Based on
boosted charged branes with varying charge densities,
temperatures and velocities.

[+
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Two Generalizations

Exact Charged Rotating Black hole Solution

ds® = —2u,dx” (dr +r A,dx”) + rég,, dx"dx”

N 1

— |wy way + g ZDW (wU) + = 5 u,u, | dx*dx"”
2m g ) q
+ u,u, — —=ug,l,| dx*dx”
( 02 p4 H 22 (1)

1 V3

p2 =r’+ Ewagwaﬁ = eu,,)\gu”w)“’ . AL= _p—zquu
which has a stress tensor and charged current
v3q V3q

m
v — 4 v v) a A~ ly ; — a ~
Tuw = GGy Mty + Guw) = g by & Ju = gt
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Two Generalizations

o

@ First order results match expansion of exact charged
rotating black hole solutions. As above we find perfect
agreement. The Chern Simons term is important here,
clearing up an old puzzle.

-]

@ While the extremal fluid stress tensors and currents may
simply be given by the naive extremal limit of the
nonextremal result, the same is not true of the full bulk
metric. Full story not yet clear.
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Discussion

Ruminations

@ Turbulence in gravity: e.g. rotating black holes.

@ The breaking of time reversal invariance.

@ Cosmic censorship and singularities in equilibriation.

@ Thermal nature of solutions of S(pm,) with order N? energy.
@ The thermodynamical nature of spacetime?

Hope to be able to get a concrete hold on these important
questions.
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