Holographic recipes at finite density and temperature

Andrei Starinets IAS and U. Southampton

STRINGS-2008 CERN August 21, 2008

ALICE Detector CERN

Outline

Part I: A (very short) summary of a subset of the gauge/gravity duality results for strongly coupled gauge theories at finite temperature/density

- thermodynamics

- first- and second-order transport coefficients

- RHIC elliptic flow and viscosity/entropy ratio

Part II: Holographic recipes for quantum liquids

-specific heat in the low temperature limit

- zero sound excitation

Over the last several years, holographic (gauge/gravity duality) methods were used to study strongly coupled gauge theories at finite temperature and density

These studies were motivated by the heavy-ion collision programs at RHIC and LHC (ALICE detector) and the necessity to understand hot and dense nuclear matter in the regime of intermediate coupling $\alpha_s(T_{\text{RHIC}}) \sim O(1)$

As a result, we now have a better understanding of thermodynamics and especially kinetics (transport) of strongly coupled gauge theories

Of course, these calculations are done for theoretical models such as N=4 SYM and its cousins (including non-conformal theories etc).

We don't know

for QCD

Heavy ion collision experiments at RHIC (2000-current) and LHC (2008-??) create hot and dense nuclear matter known as the "quark-gluon plasma"

(note: qualitative difference between p-p and Au-Au collisions)

Evolution of the plasma "fireball" is described by relativistic fluid dynamics (relativistic Navier-Stokes equations)

Need to know

thermodynamics (equation of state) kinetics (first- and second-order transport coefficients) in the regime of intermediate coupling strength:

$\alpha_s(T_{\mathsf{RHIC}}) \sim O(1)$

initial conditions (initial energy density profile) thermalization time (start of hydro evolution)

freeze-out conditions (end of hydro evolution)

Computing transport coefficients from dual gravity

Assuming validity of the gauge/gravity duality, all transport coefficients are completely determined by the lowest frequencies in quasinormal spectra of the dual gravitational background

(D.Son, A.S., hep-th/0205051, P.Kovtun, A.S., hep-th/0506184)

This determines kinetics in the regime of a thermal theory where the dual gravity description is applicable

Transport coefficients and quasiparticle spectra can also be obtained from thermal spectral functions

Electrical conductivity in $\mathcal{N} = 4$ SYM

Weak coupling: $\lambda \ll 1$

$$= 1.28349 \frac{e^2 (N_c^2 - 1) T}{\lambda^2 \left[\ln \lambda^{-1/2} + O(1) \right]}$$

Strong coupling: $\sigma = \frac{e^2 N_c^2 T}{16 \pi} + O\left(\frac{1}{\lambda^{3/2}}\right)$ $\lambda \gg 1$

* Charge susceptibility can be computed independently: $\Xi = \frac{N_c^2 T^2}{8}$ D.T.Son, A.S., hep-th/0601157

 $\sigma =$

Einstein relation holds: $\frac{\sigma}{\rho^2 =} = D_{U(1)} = \frac{1}{2\pi T}$

Buchel, 0805.2683 [hep-th]; Myers, Paulos, Sinha, 0806.2156 [hep-th] Second-order transport coefficients in N = 4 SYM in the limit $N_c \rightarrow \infty$, $g_{YM}^2 N_c \rightarrow \infty$ Relaxation time

Here we also used results from: S.Bhattacharyya,V.Hubeny,S.Minwalla,M.Rangamani, 0712.2456 [hep-th]

Generalized to CFT in D dim: Haack & Yarom, 0806.4602 [hep-th];

Finite 't Hooft coupling correction computed: Buchel and Paulos, 0806.0788 [hep-th]

Question: does this affect RHIC numerics?

Hydrodynamics: fundamental d.o.f. = densities of conserved charges Need to add constitutive relations!

Example: charge diffusion

Conservation law Constitutive relation [Fick's law (1855)]

Diffusion equation

Dispersion relation

Expansion parameters: $\omega \ll T$, $q \ll T$

 $\partial_t j^0 + \partial_i j^i = 0$

 $\partial_t j^0 = D\nabla^2 j^0$

 $\omega = -i D q^2 + \cdots$

 $j_i = -D \,\partial_i \,j^0 + O[(\nabla j^0)^2]$

Luzum and Romatschke, 0804.4015 [nuc-th]

Viscosity/entropy ratio in QCD: current status

Theories with gravity duals in the regime where the dual gravity description is valid

Kovtun, Son & A.S; Buchel; Buchel & Liu, A.S

(universal limit)

QCD: RHIC elliptic flow analysis suggests

QCD: (Indirect) LQCD simulations

H.Meyer, 0805.4567 [hep-th]

Trapped strongly correlated cold alkali atoms T.Schafer, 0808.0734 [nucl-th]

Liquid Helium-3

This part of the talk -

"Holographic recipes at finite density and low temperature"

- is based on the paper

"Zero Sound from Holography"

arXiv: 0806.3796 [hep-th]

by

Andreas Karch

Dam Thanh Son

A.S.

Probing quantum liquids with holography		
Quantum liquid in p+1 dim	Low-energy elementary excitations	Specific heat at low T
Quantum Bose liquid	phonons	
Quantum Fermi liquid (Landau FLT)	fermionic quasiparticles + bosonic branch (zero sound)	

Departures from normal Fermi liquid occur in

- 3+1 and 2+1 –dimensional systems with strongly correlated electrons

- In 1+1 –dimensional systems for any strength of interaction (Luttinger liquid)

One can apply holography to study strongly coupled Fermi systems at low T

The simplest candidate with a known holographic description is

at finite temperature T and nonzero chemical potential associated with the "baryon number" density of the charge

There are two dimensionless parameters:

is the baryon number density

is the hypermultiplet mass

The holographic dual description in the limit is given by the D3/D7 system, with D3 branes replaced by the AdS-Schwarzschild geometry and D7 branes embedded in it as probes.

Karch & Katz, hep-th/0205236

AdS-Schwarzschild black hole (brane) background

D7 probe branes

The worldvolume U(1) field

couples to the flavor current at the boundary

Nontrivial background value of corresponds to nontrivial expectation value of

We would like to compute

- the specific heat at low

temperature

- the charge density correlator

Conclusions

The program of computing first- and second-order transport coefficients in N=4 SYM at strong coupling and large number of colors is essentially complete

These calculations are helpful in numerical simulations of non-equilibrium QCD and stimulated developments in other fields such as LQCD, pQCD, condmat

Need better understanding of

- thermalization, isotropisation, and time evolution [Janik et al.]

- corrections from higher-derivative terms [Kats & Petrov; Brigante, Myers, Shenker, Yaida]

[Buchel, Myers, Paulos, Sinha, 0808.1837 [hep-th]]

LHC (ALICE) will provide more data at higher T

At low temperature and finite density, does holography identify a new type of quantum liquid?

(perturbative study of SUSY models at finite temperature and density would be very helpful)

THANK YOU

Is the bound dead?

Y.Kats and P.Petrov, 0712.0743 [hep-th] "Effect of curvature squared corrections in AdS on the viscosity of the dual gauge theory"

 $\frac{\eta}{s} = \frac{1}{4\pi} \left(1 - \frac{1}{2N} \right) \qquad \mathcal{N} = 2 \quad \text{superconformal Sp(N) gauge theory in d=4}$ $S = \int d^D x \sqrt{-g} \left(R - 2\Lambda + c_1 R^2 + c_2 R_{\mu\nu} R^{\mu\nu} + c_3 R_{\mu\nu\rho\sigma} R^{\mu\nu\rho\sigma} + \cdots \right)$

But see A.Buchel, 0804.3161 [hep-th]

M.~Brigante, H.~Liu, R.~C.~Myers, S.~Shenker and S.~Yaida,
 ``The Viscosity Bound and Causality Violation," 0802.3318 [hep-th],
 ``Viscosity Bound Violation in Higher Derivative Gravity," 0712.0805 [hep-th].

The "species problem" T.Cohen, hep-th/0702136, A.Dobado, F.Llanes-Estrada, hep-th/0703132

Second-order hydrodynamics

Hydrodynamics is an effective theory, valid for sufficiently small momenta

$k \, l_{mfp} \ll 1$

First-order hydro eqs are parabolic. They imply instant propagation of signals.

This is not a conceptual problem since hydrodynamics becomes "acausal" only outside of its validity range but it is very inconvenient for numerical work on Navier-Stokes equations where it leads to instabilities [Hiscock & Lindblom, 1985]

These problems are resolved by considering next order in derivative expansion, i.e. by adding to the hydro constitutive relations all possible second-order terms compatible with symmetries (e.g. conformal symmetry for conformal plasmas)

Second-order hydrodynamics in $4d \mathcal{N} = 4$ SYM

Second-order conformal hydrodynamics can be systematically constructed

Using AdS/CFT, all new transport coefficients for N=4 SYM can be computed

$$\eta = \frac{\pi}{8} N_c^2 T^3, \ \ \tau_{\Pi} = \frac{2 - \ln 2}{2\pi T}, \ \ \kappa = \frac{N_c^2 T^2}{8}$$

$$\lambda_1 = \frac{\eta}{2\pi T}, \ \lambda_2 = -\frac{\eta \ln 2}{\pi T}, \ \lambda_3 = 0$$

Here we also used results from: S.Bhattacharyya,V.Hubeny,S.Minwalla,M.Rangamani, 0712.2456 [hep-th]

Generalized to CFT in D dim: Haack & Yarom, 0806.4602 [hep-th];

Finite 't Hooft coupling correction computed: Buchel and Paulos, 0806.0788 [hep-th]

Question: does this affect RHIC numerics?

Second-order conformal hydrodynamics

$$\Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu} u^{\nu} \qquad \sigma^{\mu\nu} = 2\nabla^{<\mu} u^{\nu>} \qquad u^{\mu} u_{\mu} = -1$$

$$D \equiv u^{\mu} \nabla_{\mu} \qquad \Omega^{\mu\nu} = \frac{1}{2} \Delta^{\mu\alpha} \Delta^{\nu\beta} (\nabla_{\alpha} u_{\beta} - \nabla_{\beta} u_{\alpha})$$

$$A^{<\mu\nu>} = \frac{1}{2} \Delta^{\mu\alpha} \Delta^{\nu\beta} (A_{\alpha\beta} + A_{\beta\alpha}) - \frac{1}{d-1} \Delta^{\mu\nu} \Delta^{\alpha\beta} A_{\alpha\beta}$$

Derivative expansion in hydrodynamics: first order
Hydrodynamic d.o.f. = densities of conserved charges

$$\begin{aligned}
& & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
&$$

Second-order conformal hydrodynamics

$$T_{\text{conformal}}^{\mu\nu} = \varepsilon \, u^{\mu} \, u^{\nu} + \frac{\varepsilon}{d-1} \, \Delta^{\mu\nu} + \Pi^{\mu\nu}$$
$$\Pi^{\mu\nu} = -\eta \sigma^{\mu\nu} - \tau_{\Pi} \left[D\Pi^{<\mu\nu>} + \frac{d}{d-1} \Pi^{\mu\nu} \left(\nabla \cdot u\right) \right]$$
$$+ \kappa \left[R^{<\mu\nu>} - (d-2) u_{\alpha} R^{\alpha<\mu\nu>\beta} u_{\beta} \right]$$
$$+ \frac{\lambda_{1}}{\eta^{2}} \Pi_{\lambda}^{<\mu} \Pi^{\nu>\lambda} - \frac{\lambda_{2}}{\eta} \Pi_{\lambda}^{<\mu} \Omega^{\nu>\lambda} + \lambda_{3} \Omega_{\lambda}^{<\mu} \Omega^{\nu>\lambda}$$

$$D \equiv u^{\mu} \nabla_{\mu} \qquad \qquad \Omega^{\mu\nu} = \frac{1}{2} \Delta^{\mu\alpha} \Delta^{\nu\beta} \left(\nabla_{\alpha} u_{\beta} - \nabla_{\beta} u_{\alpha} \right)$$

$$$$

First-order conformal hydrodynamics

Weyl transformations:

$$g_{\mu\nu} \to e^{-2\omega} \, g_{\mu\nu}$$

$$T^{\mu\nu} \to e^{(d+2)\omega} T^{\mu\nu}$$

 $T^{\mu}_{\mu} = 0$

In first-order hydro this implies: $\varepsilon = (d-1)P, \ \zeta = 0$

 $u^{\mu} \rightarrow e^{\omega} u^{\mu} \qquad T \rightarrow e^{\omega} T \qquad \sigma^{\mu\nu} \rightarrow e^{3\omega} \sigma^{\mu\nu}$

Thus, in first-order hydro:

$$T^{\mu
u}_{
m conformal} = arepsilon \, u^{\mu} \, u^{
u} + rac{arepsilon}{d-1} \, \Delta^{\mu
u} - \eta \, \sigma^{\mu
u}$$

A hand-waving argument

 $\eta \sim \rho v l \sim \rho v^2 \tau \sim n m v^2 \tau \sim n \epsilon \tau$ $s \sim n$

Thus $\frac{\eta}{s} \sim \epsilon \tau \geq \hbar$

 $\frac{\eta}{s} \geq \hbar/4\pi$

Gravity duals fix the coefficient:

The "species problem" Classical dilute gas with a LARGE number of components has a large Gibbs mixing entropy $s = n \ln \left[\frac{1}{n} \left(\frac{mk_B T}{2\pi\hbar^2} \right)^{3/2} \right] + \frac{5}{2}n + n \ln N_f$ $\eta \sim \frac{\sqrt{mk_BT}}{d^2}$ To have $\frac{\eta}{s} < \frac{\hbar}{4\pi k_B}$ with C_{60} Buckminsterfullerene C₆₀ need $N_f > 10^{4000}$ (Dam Son, 2007) a.k.a."buckyball" A.Dobado, F.Llanes-Estrada, To have $\frac{\eta}{s} \sim 8.8 \frac{\hbar}{4\pi k_B}$ need hep-th/0703132 $N_f \sim 10^{450}$ species T.Cohen, hep-th/0702136

Can we test

 $\eta/s \geq 1/4\pi \pm ?$

experimentally?

A characteristic feature of systems saturating the bound: strong interactions

Heavy ion collisions - experiments at RHIC

(Indirect) lattice QCD simulations

Trapped atoms – strongly interacting Fermi systems

QCD kinetics

Viscosity is ONE of the parameters used in the hydro models describing the azimuthal anisotropy of particle distribution at RHIC

 d^2N^i $= N_0^i \left[1 + 2v_2^i(p_T) \cos 2\phi + \cdots \right] \qquad v_2^i(p_T)$ -elliptic flow for particle species "i" 20 Elliptic flow reproduced for 15 10 0 $0 < \eta/s \le 0.3$ 3 P_ (Ge' e.g. Baier, Romatschke, nucl-th/0610108 10 Perturbative QCD: 5 $\eta/s \left(T_{\mathsf{RHIC}}\right) \approx 1.6 \sim 1.8$ Chernai, Kapusta, McLerran, nucl-th/0604032 0 2 ³ p_{T} (GeV SYM: $\eta/s \approx 0.09 \sim 0.28$ 'n 1

Elliptic flow from relativistic hydro simulations (Israel-Stewart formalism)

H.Song and U.Heinz, 0712.3715 [nucl-th]

Predictions of the second-order conformal hydrodynamics

Sound dispersion:
$$\omega_{1,2} = \pm c_s q - i\Gamma q^2 \pm \frac{\Gamma}{c_s} \left(c_s^2 \tau_{\Pi} - \frac{\Gamma}{2} \right) q^3 + O(q^4)$$

$$G_R^{xy,xy}(\omega,q) = P - i\eta\omega + \eta\tau_{\Pi}\omega^2 - \frac{\kappa}{2}\left[(d-3)\omega^2 + q^2\right]$$

 $\Gamma = \frac{d-2}{d-1} \frac{\eta}{\varepsilon+P}$

New transport coefficients in $\mathcal{N}=4~\mathrm{SYM}$

Sound dispersion:
$$\omega = \pm \frac{1}{\sqrt{3}}q - \frac{i}{6\pi T}q^2 + \frac{3 - 2\ln 2}{24\pi^2\sqrt{3}T^2}q^3 + \cdots$$

Kubo:

Kubo:

$$G_R^{xy,xy}(\omega,q) = -\frac{\pi^2 N_c^2 T^4}{4} \left[iw - w^2 + k^2 + w^2 \ln 2 - \frac{1}{2} \right] + O(w^3, wk^2)$$
$$w = \omega/2\pi T, \ k = q/2\pi T$$

 $P = \frac{\pi^2}{8} N_c^2 T^4 , \ \eta = \frac{\pi}{8} N_c^2 T^3 , \ \tau_{\Pi} = \frac{2 - \ln 2}{2\pi T} , \ \kappa = \frac{\eta}{\pi T}$

Computing transport coefficients from dual gravity – various methods

1. Green-Kubo formulas (+ retarded correlator from gravity)

2. Poles of the retarded correlators

3. Lowest quasinormal frequency of the dual background

4. The membrane paradigm

Example: stress-energy tensor correlator in $4d \ \mathcal{N} = 4 \ \text{SYM}$ in the limit $N_c \to \infty$, $g_{YM}^2 N_c \to \infty$ Zero temperature, Euclii: $G_E(k) = \frac{N_c^2 k_E^4}{32\pi^2} \ln k_E^2$ Finite temperature, Mink: $\langle T_{tt}(-\omega, -q), T_{tt}(\omega, q) \rangle^{\text{ret}} = \frac{3N_c^2\pi^2 T^4 q^2}{2(\omega^2 - q^2/3 + i\omega q^2/3\pi T)} + \cdots$ (in the limit $\omega/T \ll 1$, $q/T \ll 1$) The pole $\omega = \pm \frac{1}{\sqrt{3}}q - \frac{i}{6\pi T}q^2 + \frac{3 - 2\ln 2}{24\pi^2\sqrt{3T^2}}q^3 + \cdots$ (or the lowest quasinormal freq.) $\omega = \pm \frac{1}{\sqrt{3}}q - \frac{i}{6\pi T}q^2 + \frac{3 - 2\ln 2}{24\pi^2\sqrt{3T^2}}q^3 + \cdots$ Compare with hydro: $\omega = \pm v_s q - \frac{i}{2sT}\left(\zeta + \frac{4}{3}\eta\right)q^2 + \cdots$ In CFT: $v_s = \frac{1}{\sqrt{3}}$, $\zeta = 0$ $\Rightarrow \eta = \pi N_c^2 T^3/8$ Also, $s = \pi^2 N_c^2 T^3/2$ (Gubser, Klebanov, Peet, 1996)

Viscosity "measurements" at RHIC

Viscosity is ONE of the parameters used in the hydro models describing the azimuthal anisotropy of particle distribution

Two-point correlation function of stress-energy tensor

Field theory

Zero temperature:

 $\langle T_{\mu\nu}T_{\alpha\beta}\rangle_{T=0} = \prod_{\mu\nu,\alpha\beta} F(k^2) + Q_{\mu\nu,\alpha\beta} G(k^2)$

Finite temperature:

 $\langle T_{\mu\nu}T_{\alpha\beta}\rangle_T = S^{(1)}_{\mu\nu,\alpha\beta}G_1(\omega,q) + S^{(2)}_{\mu\nu,\alpha\beta}G_2(\omega,q)$ $+ S^{(3)}_{\mu\nu,\alpha\beta}G_3(\omega,q) + S^{(4)}_{\mu\nu,\alpha\beta}G_4 + S^{(5)}_{\mu\nu,\alpha\beta}G_5$

Dual gravity

- Five gauge-invariant combinations Z_1, Z_2, Z_3, Z_4, Z_5 of $h_{\mu\nu}$ and other fields determine G_1, G_2, G_3, G_4, G_5
- > Z_1, Z_2, Z_3, Z_4, Z_5 obey a system of coupled ODEs
- Their (quasinormal) spectrum determines singularities of the correlator

Computing finite-temperature correlation functions from gravity

- Need to solve 5d e.o.m. of the dual fields propagating in asymptotically AdS space
- Can compute Minkowski-space 4d correlators
- Gravity maps into real-time finite-temperature formalism (Son and A.S., 2001; Herzog and Son, 2002)

Now look at the correlators obtained from gravity

 $\langle T_{00}(k)T_{00}(-k)\rangle = \frac{3N^2\pi^2T^4q^2}{2(\omega^2 - q^2/3 + i\omega q^2/3\pi T)} + \cdots$

The correlator has poles at $\omega = \pm \frac{q}{\sqrt{3}} - i \frac{q^2}{6\pi T} + \cdots$

The speed of sound coincides with the hydro prediction!

$$\eta = \frac{\pi N^2 T^3}{8} \\ s = \frac{\pi^2}{2} N^2 T^3$$

$$\left. \frac{\eta}{s} = \frac{1}{4\pi} \right.$$

Similarly, one can analyze another conserved quantity – energy-momentum tensor:

$$\partial_{\mu}T^{\mu\nu} = 0$$

This is equivalent to analyzing fluctuations of energy and pressure

$$\langle T^{00} \rangle = \epsilon \qquad \langle T^{ij} \rangle = P \,\delta^{ij}$$

We obtain a dispersion relation for the sound wave:

$$\omega = \pm v_s q - \frac{i}{2(\epsilon + P)} \left(\frac{4}{3}\eta + \zeta\right) q^2$$

Universality of η/s

Theorem:

For a thermal gauge theory, the ratio of shear viscosity to entropy density is equal to $1/4\pi$ in the regime described by a dual gravity theory

(e.g. at $g_{YM}^2 N_c = \infty$, $N_c = \infty$ in $\mathcal{N} = 4$ SYM)

Remarks:

• Extended to non-zero chemical potential:

Benincasa, Buchel, Naryshkin, hep-th/0610145

- Extended to models with fundamental fermions in the limit $N_f/N_c \ll 1$ Mateos, Myers, Thomson, hep-th/0610184
- String/Gravity dual to QCD is currently unknown

Description argument Son, P. Kovtun, A.S., hep-th/0405231 Direct computation of the correlator in Kubo formula from AdS/CFT (ABuchel, hep-th/0408095) "Membrane paradigm" general formula for diffusion coefficient + interpretation as jowest quasinormal frequency = pole of the substance correlator + Buchel-Liu theorem P. Kovtun, D.Son, A.S., hep-th/0309213, A.S., to appear, P.Kovtun, A.S., hep-th/0506184, A.Buchel, J.Liu, hep-th/0311175

Universality of shear viscosity in the regime described by gravity duals

$$ds^{2} = f(w) \left(dx^{2} + dy^{2} \right) + g_{\mu\nu}(w) dw^{\mu} dw^{\nu}$$

 $\eta = \frac{\sigma_{abs}(0)}{16\pi G}$

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, dx e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle$$

$$\sigma_{abs} = -\frac{16\pi G}{\omega} \operatorname{Im} G^{R}(\omega)$$

$$= \frac{8\pi G}{\omega} \int dt \, dx e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle$$

Graviton's component h_y^x obeys equation for a minimally coupled massless scalar. But then $\sigma_{abs}(0) = A_H$.

Since the entropy (density) is $s = A_H/4G$ we get

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Predictions of hydrodynamics

Hydrodynamics predicts that the retarded correlator

 $\langle T_{00}(k) T_{00}(-k) \rangle$

has a "sound wave" pole at

$$\omega = v_s q - \frac{i}{2(\epsilon + P)} \left(\frac{4}{3}\eta + \zeta\right) q^2$$

Moreover, in conformal theory $\epsilon = 3P \implies v_s^2 = \frac{\partial P}{\partial \epsilon} = 1/3$

Computing transport coefficients from "first principles"

Fluctuation-dissipation theory (Callen, Welton, Green, Kubo)

Kubo formulae allows one to calculate transport coefficients from microscopic models

 $\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, d^3 x e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle$

In the regime described by a gravity dual the correlator can be computed using the gauge theory/gravity duality