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1. Near-extremal D3-branes

The near-extremal D3-brane metric describes ' = 4 gauge theory at finite temper-
ature [ ] (also unpublished work of Strominger):

d 2
ds’ = H '* (—hdt* + di®) + H'? (% + r2d9§>

) y (1)
H=1+75 h=1=3
In the now-familiar strong coupling limit of AdS/CFT [ ;
; ]
L? 2N? L 9
One finds free energy density [ ]
F 3 15¢(3)
)\ —- > — - ‘e ree 3
FN =5 <4+8>\3/2+ )ff 3)

2

where fi. = =% (N? — 1)T* for SU(N) super-Yang-Mills.

Gubser, AdS/CFT and QCD at finite 7, 8-21-08 4 1 Near-extremal D3-branes
At weak coupling [ ; ;
; I,
3 V2+3
fA) = (1 — oA T N2 ) fivee (4)
The most modern treatment I know of is by [ ]: (3) and (4) uniquely

fix a (4,4) Padé estimate,
[ 1+ aX? 4 BA+ AN
fiee 14 QA2 4 BA+ A3

S/So N = 4 super-Yang-Mills

1

)

Comparison with a hard thermal loop
calculation of s/ sy (roughly, two-loop
perturbation theory supplemented by a
self-consistent gap equation for thermal
masses) does pretty well out to A ~ 0

weak-coupling to order \3/2

1 P
0.95 W strong-coupling to order A =3/

\\ \\‘\\ T
\ S~
4. 0.8 N T i
LI L s e
HTL (green) calculations of entropy in N' = 4 0.7
0 2 4 6 8 10 12 14

[ i A= g?N
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2. Shear viscosity

Neglecting loop and stringy corrections to two-derivative gravity, a broad set of

black branes have [ ; ; ]
n 1
J_ . 6
s 4r ©
and D3-branes in particular have [ ]
Ui 1 135¢ (3)
—=— 1+ +... ). 7
s Am < 8A3/2 )
Loop corrections may lead to violations [ ; ]

of the conjectured bound /s > 1/4.

7) s a key input for relativistic hydrodynamics:

™ = (e + p)u'u” + pg"” — prepvs 3

2
n (Vauﬂ + Vﬁua - —gaﬁvAuA>

)
+ CgagvAuA] where P = g" + ut'u” .
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Lattice simulations of pure glue [ ] indicate
5/3
[ﬂ} _ o131~ 3 <1 @90%cL )
S best 4 S

This 1s hard work for the lattice because viscosities arise from real-time correlators:

2 o1
n <5ik'5jl + 57:z5jk - §5¢j5kl> + C5«1:j5kz = — lim —Im Gi,m(“})

w—0 W

(10)
GF () = —i / & dt ¢ 0(t) ([Ty(t, ©), Tu(0, 0)])
whereas lattice provides direct access only to Euclidean correlators:
E ’ 3, iwnT - 2mn
G*(wy,) = dr | &’z e (Tp{O(1,2)0(0)}) Wy = ——
0 5 (an

— —GR(z'wn) = / dew,) forn > 0.

o W —iw,

To get GR(w) for real w starting from lattice data, some assumptions about spectral
density p(w) have to be made.




Gubser, AdS/CFT and QCD at finite 7', 8-21-08 7 2 Shear viscosity

Elliptic flow in heavy ion collisions puts bounds on 7). Here’s the relevant geometry:

Side view of an off-center gold-gold collision. 2R/ Y X
The reaction plane is the plane of the page b as = =
a vector is approximately determined for each . N 7
event.
b ~
~ ~ 100 at RHIC, 2800 at LHC. 2R =14 fm
Beam’s eye view of a Particles prefer to be “in plane”:

non-central collision:

1.

Cartoon of elliptic flow. From [ J]. Uneven pressure gradients lead to anisotropic ex-
pansion.
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Experimental measure of elliptic flow is d-wave coefficient in an expansion of az-
imuthal distribution of particles (here y = tanh ' p, / E is rapidity):

dN dN

= 14+ 2v9co82¢p + ... (12)
prdprdyd¢  prdprdy | |

2 0 Viscosity dependence of v, was studied e.g. in
= 018" b ~ 6.8 fm (16-24% Central) [ ]in terms of I, /7,, where

%1%+ sTARData 4

014 I'y=—— sound attenuation length

0.121- 3T s

o1p T ~ 1 characteristic expansion (13)

0.08—

o.os? E =0.1 N Q ~ i

T 70 s A

oot - L But... Ideal hydro, Iy = 0, was “designed” to

C P N SN P R
G0 02 04 06 08 1 12 14 16

oGev)  agree with data in this study.

Effect of shear viscosity on predictions of Upshot: data favors the range

va(pr). From [ |. Data points 5/9
T<02~ L :

are pions, from STAR [ 1. n< = (14)
s 41
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3. Equation of state and bulk viscosity

QCD is significantly non-conformal near 7., and confinement is a smooth cross-
over, not a phase transition.

Lattice results for the equa- 16.0 | I ' ' ' ' . /1'_4 i
tion of state of QCD. From SB
[ 7. csp is 14.0 ' ) 1
the energy density for free 120 | 4 : T — i
quarks and gluons. The 20% e/T™:
deficiti . . 10.0 : (3/4)s 4 i

eficit in ¢/egp IS suggestive . : 3p/T
of strong coupling. 80 | ,

6.0 - ,

T ~ 170 MeV ‘ 3 flavor, N =4, p4 staggered

C . | ' N

4.0 3 m_ =770 MeV
RHIC operates at 20 b ]
T ~ 280 MeV. 0o 2 /T
T ~=~ 600 MeV.
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In a bottom-up approach [ ], we can reproduce the lattice
€0s using
1 1
L= R—-(0¢) =V (¢)] . 15

I3}

V' (¢) can be adjusted to match dependence of
dp

= — (16)
de

on 7. Then adjust k2 to get desired ¢/7™ at some high scale (say 3 GeV). Here’s a
quasi-realistic choice:

—12 cosh y¢ + bgp?

speed of sound: ¢

V(o) v =0.606, b=2.057. (17)

Authors of [ ; ] took same starting
point (15) further: an appropriate V' (¢), with V' ~ —qbze\/%s, gives a Hawking-
Page transition to confinement, logarithmic RG in UV, and glueball with m?* ~ n,
as in linear confinement.
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3 Equation of state and bulk viscosity

Once conformal invariance is broken, we can investigate bulk viscosity [

], following a number of earlier works, e.g. [ ;

]:
1

1 . ] —
(= 5 BL%Z Im / d*z dt e 0(t)([T" .(t, Z), T",(0,0)]) . (18)
R | t,x
Shear viscosity relates to ) ’
absorption probability for <> ?
an hyy graviton. Bulk vis- h., C ) h;/¢ z
cosity relates to absorption ) (
of a mixture of the h;; gravi- %/
ton and the scalar ¢. } il
rl ~p‘fl)2>\)rl) t_’ ~pabs/m‘h 2= zH
, . y dr?
ds® = > (=h(r)dt® + di?) + e*P — o= o(r). (19)

h(r)

In a gauge where 0¢ = 0, let’s set by = e >40g1; = e 249y = € 245 gs5. Then

4 1 / / h, /
11— (_Q_ZLA +3B _E> 11"’(_

—2A+2B h/ h/B/
6—w2 + — ) hll

h? 6hA’ h
(20)
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2
e Type I: smooth cross- Cs
over, like (17). s e

e Type II: nearly second R
order, cg — Oat7..

e Type III: No BH below

025F

O lattice, 2+1 flavors

— lattice, pure glue

X 0.15F — Type I BH
1., like [ : '
] o010l ——. Type I BH
’ f Type IIl BH
005
lls 0 Tos 0 1s 20 25 a0 s ‘410T/TC
e Typel BH 9
. Type IIBH e Sharper behavior of ¢; gives
Type I11 BH sharper C/ 5

I lattice, pure glue

=== sum rule, 2+1 flavors

‘ 4‘.0 T/T.

e Large ( at 7T, is hard to ar-
range with a reasonably re-
alistic EOS.

e Poses a challenge for “soft
statistical ~ hadronization”
proposal of [

].
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Is bulk viscosity experimentally relevant?

Interesting proposal of Kharzeev and collaborators [ ;
]: bulk viscosity is a strong correction to hydro at 7" = 7. leading
to last-instant entropy production accompanying freezeout:

expansion

If ¢ is large, much entropy / many soft particles are produced as thermal
medium expands. This depiction is in imitation of a figure in [ 1.

Bottom-up calculations in AdS suggest that it’s hard to get (/s > 0.1 with quasi-
realistic eos. If that’s right, then expansion-induced entropy is probably not so sig-
nificant.
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4. The trailing string

A heavy external quark moving at speed v experiences a drag force [
; ] (see also [ 1:

dp _ _W\/XTQ v 21

dt 2 V1—0v?
(21) arises in a simple way: a fundamental string trails out behind the quark into
AdS5-Schwarzschild, pulling back upon it.

q q

ball

R3,1

-

AdSS— chwarzschild

fundamental
string

Static force versus drag force. In both cases, the classical shape of the string is
known analytically.
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Mass is formally infinite, but if we use instead a finite heavy quark mass )/, find

dp D 2 M
— = —— where

e ’7' fr— —_7
dt TQ @ W\/XTQ

So characteristic stopping length / time is 7.

(22)

To get a numerical value for 7, I favor comparing N' = 4 SYM to QCD at fixed
energy density rather than temperature. SU(3) SYM has about 3x the number of
degrees of freedom as QCD, and I expect 7 to decrease with number of dof’s.

To fix A\, I favor [ ] using the following effective measure of av:
3 ,0F,; , .
Quq(r,T) = v F,; is excess free energy from heavy ¢-q pair. (23)
RS,I q q l X R3,1 q q
AdS—-Schwarzschild y AdS—-Schwarzschild

massless exchange

Two string theory configurations contributing to Fy;. Only U-shape is fully under-
stood. But see [ '] for recent work on exchange diagram.

Gubser, AdS/CFT and QCD at finite 7, 8-21-08 16 4 The trailing string

Simplest approximation to U-curve contribution is zero temperature result:

3 2OV B 32
ozSYM(T—O)_er - _\/Xr(1/4)4' (24)

To fix A ~ 5.5, compare to lattice at largest » where U-shape dominates.

a) Tsym = 130 Mev Static quark force for N' = 4 SYM (yellow
0.1 0.25 0.5 1 band) versus Ny = 2 lattice results from
0.6 / 0.6 [ 1.
0.4 :</ 0.4 ® cgyy = €qep means
- T, = Thep/3Y% 1 took
s 0.2 0.2 syM = 4Qcp . 00
o o Thep ~ 250 MeV here.
0.2 0.2 e An alternative perspective can be
0.1 0.25 0.5 1 found in [ I
r
The match is conspicuously imperfect! At least we fix A from a leading-order effect.
Matching Debye length in large 7 tail gives even smaller A [ ].

2
A sensible alternative is Tcp = Tsyy with A = 67 from setting i‘(—;f = o, ~ (.5.

Always, N = 3.
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Using my preferred comparison scheme, 7. ~ 2fm/c for charm at RHIC; also
T,/ T. = my/m.. So charm equilibrates, and b does so only partially.

R4 4 and vy for heavy quarks. pr is for 21-8:”‘w‘~w~“\””“““““““““‘““:
a non-photonic electron. From [ O 1@ Ot0%central  —— Armestoetal. () =
]. 1.4 [ vanHeesetal. (ll) -

12— S 3/(2xT) Moore & =

. el {n -------- {12/(2;:7) Teaney (Ill) -

Crudely, R4(pr) is the % of 1 4= L
charm quarks escaping at a given PED Y E
0.6— 3 VeTe TeAH AR e, T -

transverse momentum. Y - e =
0.4— N = - e e

. i i LI TL Rl PP .,.1.’.’.’.'.’ § 7:

But pr shown is for e decay 02E" pushu@\Sm=200Gev e g - 3
roduct, so roughly double it to %, 27T e
p ’ gy I>N - (b) . E 7° Raa ;>4 GeVic|
get Pr of c. 0-15:* minimum bias 5 + = 70V, p >2GeVic |
. C e e*R,,, e*ViF ]

Smaller R 44 and bigger v, go o= § T E
together. o.05F- "’W SO e =S =
- e e e e T ]

van Hees curves have 7, =~ 4.5 fm. of % ]
0 1 2 3 4 5 6 7 8 9

P, [GeV/c]

Upshot: Data favors larger 7., but not much larger, than string theory analysis.
For an alternative viewpoint, see e.g. [ ]; also, beware b contribution.
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Tagging b’s and ¢’s should be possible after detector upgrades at RHIC, and at LHC.

A distinctive difference [ ] between pQCD and AdS/CFT
predictions from RHIC to LHC energies may come from

tbottom M charm

RY ~ for AdS/CFT
44 ~ t(:harm Myottom (25)

1 - pcb/pT for pQCD, Pey X qLQ

ch
RAA — c
AA

pQCD  predictions  for
RY,  separate  cleanly
from AdS/CFT because
assumptions about initial

— pQCD Rad+El, PHOBOS
— — pQCD Rad+El, KLN
-—- pQCD Rad, § = 40

. pQCD Rad, § = 100
—— AdS/CFT D = 3, PHOBOS
-—. AdS/CFT D= 3, KLN
— — AdS/CFT D=1, PHOBOS

- AdS/CFT D=1, KLN
-—. AdS/CFT \ = 5.5, PHOBOS
— - AdS/CFT A = 5.5, KLN

conditions cancel out. But
beware uncertainty on
the limits of validity of
AdS/CFT.

Related studies by Brasoveanu and d’Enterria are in progress.
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4.1. Stochastic forces on heavy quarks

Drag force is not the whole story: in a Langevin description [

; ; ]

g 2
P gt Ft)  n- it 20

2m

where [ is a stochastic force: if p'is in the 1 direction, then

FL()EA() = kot — 1), g = Ve

T (27)
(BB () ~ rrdydth — 1), mr=mVAee—s
String theory value for x;, exceeds Einstein relation except near v = (:
1

Kp = m2TE77, (28)
hinting that Langevin description doesn’t capture all the physics.
Also: correlation time in £'(t) diverges as 1/v/1 — 0.
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71_> X R3 1
y Ad%—Schwarzschild

signals go  Yv
this way

The horizon on the worldsheet is at y = v,,.

timelike

spacelike  Stochastic fluctuations are controlled
by causal horizon on the worldsheet.

AdS5-Schwarzschild geometry is

L*m?T? , 1 dy?
2 4y 742 =2
ds; = " (1 —y")dt” + dz* + 2]

(29)

Consider observers who stay at fixed i while holding onto the trailing string:

o dr* > 0ify > y, = v/1 — v?: “outside” the worldsheet black hole.

e d7* < 0ify < y,: “inside” the worldsheet black hole. The observer can’t stay
at fixed v, but slides down the string.

Something roughly like Hawking radiation must emanate from the worldsheet hori-
zon, leading to stochastic /(). Actual computations directly access ( F;(t1)F}(t2)).
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21

5 Jet-splitting?

5. Jet-splitting?

A hard process occurring near the edge of the medium
produces a near-side “trigger” jet (red). The away-side
parton interacts strongly with the medium. From [.

I

Jet reconstruction is impractical, so make histograms

of azimuthal separation between two energetic hadrons.

0.4, . T ‘ T T ‘ T
[ 3-4x0.4-1GeVic | 3-4x1-2 GeVic 3-4x2-3 GeV/c
o e | 00
L —~©-p-p ] PHENIX Preliminary
: . 0.2 kS ¥ 1
With appropriate pr cuts, ob- g ® S HS
serve a double-hump structure & 01 5, - ek
. e T - & o °
on away-side: “jet-splitting.” 3 ) X : wmof’d) %03 : : :
From [. 1. é %} 45x45GeVic | § 5-10 x 5-10 GeVic |
. . . - x2.5
More inclusive cuts fill in - T
the region around A¢ = n:
“jet-broadening” [ ¢¢¢¢¢¢
]
A¢ (rad)
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A string theory calculation has been done for heavy quarks: [ ;

] and refs therein.

A heavy quark trails a string
behind it. The string cou-
ples to gravitons dual to
(Tynn) in the gauge theory.

Calculate h,,, using lin-
earized Einstein equations.

One big calculation gives
(T"™) over a broad range
of scales; high k asymptotics pioneered in [
interesting.

especially

] turn out to be

Render all quantities dimensionless:

V1 — 02

§ =Tz V-
=Ty

<T0[(O7 f) T TCOfJulomb(O? f)> : (30)
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S for v=0.75
IR B
14R$‘ﬁﬂ)’x:::.. ]
12| & ﬁﬂll_p‘. . ]
10,‘_'\ ”,X—". . ]
‘,‘_* ””*.. ]
Q, gla « % \2 2 7 5y 5, . . ]
6l p f\ ly » . . ]
N vy, . 1
. 3 e |
> :.. 1
2' _':: ]
0t > A

5

10 15

Rescaled, subtracted Poynting vector generated by a quark in an infinite, static medium. Green
shows the Mach angle, and blue shows the parabolic boundary of the diffusion wake. For T =

318 MeV, |)? | =5 is a distance 1 fm from the quark. From [ 1.
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A phenomenological  comparison
. . 1.2 : .
[ | ]. including Cooper- 0GCD 0,58
Frye  hadronization  shows that 1 - —
AdS/CFT does lead to jet-splitting o8 |
at pr ~ 5 GeV. 3
. . = 06f
But the reason is unexpected: it's not &
the hydro region that does it, it’s the 04T
“neck” region with || < 1 fm. 0.2
Puzzles / problems remain: 0 ;
AdS/CFT
. Tr
e Pseudo-Mach angle is smaller than
data, and gets smaller as v — 1. —~ 087
]
s
e This was for heavy quarks! = 087
[T
., [$)
e Cooper-Frye isn’t perfect. 041
e Interpretation of experimental phe- 02 ‘ &
nomenon isn’t universally agreed 0 . . \
0 /2 T 3n/2 2n

upon.

0 [rad]
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6. Jet quenching

According to pQCD (e.g. [ ; ; D,
radiative energy loss by light quarks and gluons is
AE = %a,‘;CRQ@@Q, 31)
where the jet-quenching parameter describes how fast momentum broadens as a
function of path length Ax: G = <§i> | (32)
x

Authors including [ ;
] prefer a definition in terms of a par-
tially light-like Wilson loop with [ < Ax:

- 1
<Wadjomt(c)> A exp |:_ZlqAL2A:U] . (33)

qundamental>

A gauge-string calculation of ( leads to

3/2
G = %\/}T?’ . (34)
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A correction factor |/ Sqcp / Sgym 18 advocated in | ] to correct for
fewer degrees of freedom. Including this factor and using A = 67, as they prefer, I

calculate

at’T' = 280 MeV, (35)

m

significantly above pQCD’s ¢ ~ 0.77 GeV” /fm and almost big enough to agree
with experiment (more later).

But some puzzles remain:

e Argyres and collaborators criticize the choice of saddle point [
] and find log(W4(C)) ~ L not L*.

e ( as defined through Wilson loop may not be directly related to energy loss or
momentum diffusion in strongly coupled gauge theories.

e Independent calculations of ¢ = (p?)/Ax for heavy quarks [
; ; ] lead to larger
values than (34): larger by ~ /7 as v — 1.
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From [ 1,
(‘;V‘Il,‘@ minor additions. Pre- :E D'GZPHENIX = (Au+Au 0-5%
lictions of PQM model o " Global Systematic Uncertainty= 12%
[ ] versus 0.5 //
PHENIX data. All values of oab ///_/____ G~2.3
G are in GeV? /fm. F %
0.3f /?QZ
Best fit curve (red) has : f«/’/‘f—f _
Sestitteurve (red) 0.2 : q~13.2
g = 13.2GeV*= /fm. - __yﬁ
, ) C ]
Jo range is 0.1F PR P S—
= /. DQ A '2 N :
[ <q<28GeV/fm. G346 % 10 12 14 16 18 20

Parton Quenching Model p,(GeV/c)

1s based on many soft
momentum transfers between medium and hard partons. Other formalisms exist (see

e.g. [ ; ; ]) for connecting pQCD to
data.
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7. Falling strings

Can we calculate ab initio the energy loss of a gluon in strongly coupled N = 4?

We propose [ ] to regard an off-shell gluon as a doubled string
with both ends passing through the horizon.
energetic \

off—shell

gluon

N

on-shell gluon

Xg
S

T=0 T=0

At zero temperature, results of [ ] show that gluon scat-
tering produces approximately this type of string configuration.

At finite temperature, something funny happens: where the string crosses the hori-
zon, it can’t move! (Infinite red-shifting wrt Killing time ¢.)




Gubser, AdS/CFT and QCD at finite 7', 8-21-08 29 7  Falling strings

A doubled string starts at
' g xl R3,1 7y=0
t = 0 with some total
energy and virtuality, then y v(y) — Y=Yy
falls into the horizon over a AdS;-Schwarzschild —
distance Ax. —>
t=0

™ t=1 '

— \\

| S

Ax

e Given initial £/, what is Ax?
e Answer must depend on virtuality <= yyv, so what is maximum Ax?

e How do we roughly convert the answer to ¢?

We made estimates based on assuming the shape of the falling string quickly ap-
proaches a segment of the trailing string; confirmed numerically in [

].
For £ > T, we found Az ~ E/3 (see also [ 1), where

. 1 E
r=nlx F=—— (36)

vV 912/MN T
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This is not too different from pQCD prediction Az o< \/F/q. So let’s convert to a
rough prediction of ¢:

41K

Qrough = W . 37)

g (GeV?/fm

1 ( 304 fim) = {spacetime, UV}
\ + : : ° L4 ° ° ° ° ° °
B e 4 {spacetime, trailing, yjg=0.9}

' | |
20 - u [ ] ] ] [ ] n n n = { ) fixed 1}
e {spacetime, fixed x
4 & & & 4 4 6 4 4 s P
10F o {POND, trailing, yjg=0.9, cutoff}
stLRW ) ,
scaled LRW /—m—m——m—m—m——m—m— + {POND, fixed x'}
CD L L I 1 L
PQ 6 8 10 12 14 E (GeV)

Estimates of the jet-quenching parameter, from (37), comparing at fixed energy density, with
A = 5.5. Different symbols correspond to varying assumptions about shape of falling string. From
[ ]. LRW is from [ ] at 280 MeV, for SYM; scaled LRW is for
QCD at 280 MeV, including the \/sqcp/ssyw factor from [ 7.
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The overall picture on jet-quenching is, in my view, somewhat muddled at present:

e Good that we’re within 30 range, or close.
e Good that we can accommodate gluons that start off significantly virtual.

e Questionable to compare ¢ from falling strings to a value in PQM model, where
underlying assumptions are different.

e Bad that we don’t understand relation among jet-quenching calculations, plus
heavy quark drag / diffusion.

e Interesting to consider including fluctuations or graviton response, starting either
from [ Jor [ ].

e Maybe good that numerical study [ ] shows larger Az (so
smaller ) for falling strings; or was that due to initial conditions?
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8. Total multiplicity

Central RHIC collision:
N,

p
Na, =~ 5000 charged particles out.

art = 2 X 197 =394 nucleons in

A reasonable estimate of the en-
tropy produced is

S & T.5Naarged & 33000, (38)

(E.g. consider a gas of free hadrons
at T, and compute S/Nuarged

) o ) Charged tracks measured by STAR in a gold-gold col-
starting from partition function.) lision [

BOS’s [ 1

J. For multiplicitly estimates, see e.g. PHO-

How well can we estimate S from the gauge-string duality?

Strategy of [ ]:

e Replace QCD by a conformal theory with ¢/T* = 11, as lattice predicts for
QCD forT" = 1.271.. (Remarkably slow rise thereafter.)
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e Replace a heavy ion with a boosted “conformal soliton,” dual to a point-sourced
gravitational shock wave in AdSs: if 2= = 2" — 22, then
2EL

)= 5a),
T = s e 5%

(Power law tails are not a good thing, but at least they’re a big power: 1/ .)

/ y | R*! y / 7i;x3
xb2 vz

PRy A A standard but non-rigorous
e A W W b A - lower bound is
Nl s | s, [V
1 1 2 -
r o ) P S Z Strapped
~ '
s ; g = Atrappcd/4G5 .
H, C H/
Earlier related work is

Trapped surface is typically on past light-like trajectory reviewed in [ 1.

of shocks; shown here is projection tot = 0.
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The final result is

Seamed R 2FE L) ~ 35000 [ - . 40
trapped 7 <G5> (2BL) 0 (200Gov> (0

o I set I, = 4.3 fm to match the rms transverse radius of a gold nucleus.

o [/ =~ 19.7GeV is beam energy; /syy = 200 GeV is cm energy of a pair of
nucleons (N N).

R31 E?/? scaling is faster than Landau
QCD e (B[ ] and faster than
-~ N 1scard this region
P _ B : data (= Landau).
Tl e ® I think it’s because strong-coupling
T T~ - conformal window covers only a
confinement "N~ discard this region Eange of scal]es. A crude solution

Assume that most entropy is generated within this range, above confinement and
below pQCD.
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8 Total multiplicity

UV cutoff changes scaling from Styapped ~ E?3 to E'? at large E. So anticipate

Nehargeda ~ E 173, Maybe even for protons?

Roll-over from Landau’s £'/? to slower growth might just be starting at top RHIC

energies:

5% bo) Data @ \s/2 ’
o= ata S
Q,_, [ = gpép@ata S
& A - Fitto e'e
== 30~ e PHOBOS #
= - ¥ PHOBOS interp.
= [ = NA49
S 20— EB95
= L ... Landau + ug
~ — Landau
10
0 [ | | 2
1 10 10
\s(GeV)

Total multiplicity per participant as a function of energy. From [
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9 Outlook

9. Qutlook

e Gauge-string / Heavy-ion connection is the closest interface we have between
modern string theory and modern experiment.

e Many comparisons are successful at a semi-quantitative level. (Many more than

I have summarized here...)

e Comparisons are invariably plagued by the difficulty of translating from AdS

calculations to real-world QCD.

e We may often be measuring our successes against prevailing interpretations of

data rather than data itself.

e At the least, gauge-string calculations show what happens in a truly strongly

coupled thermal plasma.

e Insights from AdS/CFT complement pQCD intuitions and may sometimes be

closer to capturing the true dynamics.
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