General Gauge Mediation

David Shih Strings `08

Based on:

Meade, Seiberg & DS, 0801.3278 Buican, Meade, Seiberg & DS, 0808.zzzz

- Viable spectrum
- Calculability
- Distinctive phenomenology

Motivation

- What are the most general predictions/ parameters of gauge mediation?
- Specially important question in the LHC era.
- To date many models of gauge mediation have been constructed.
- However, it has not been clear up to now which features of these models are general and which are specific.

Ordinary gauge mediation

(Dine, Nelson, Nir, Shirman, ...

Spurion for hidden sector SUSY:

 $\langle X \rangle = M + \theta^2 F$

Messengers ϕ in real representation of G_{SM} receive tree-level SUSY mass splittings.

 $W = \lambda X \phi^2$

Solution Loops of the messengers and SM gauge fields communicate SUST to the MSSM.

Predictions of (O)GM

- No FCNCs
- ⊘ Small A terms
- Gaugino unification
- Sfermion mass hierarchy
- Bino or slepton NLSP
 SP
 SP
- Positive sfermion masses

Always true. Follows from gener considerations.

True only in certain models

Beyond OGM

 $W = \lambda_{ij} X \phi_i \tilde{\phi}_j + m_{ij} \phi_i \tilde{\phi}_j + f X$ $\phi_i \in \mathbf{5}, \quad \tilde{\phi}_i \in \mathbf{\overline{5}}$

Large class of simple, renormalizable extensions of OGM.

(Cheung, Fitzpatrick, DS)

 By including doublet/triplet splitting in the messenger couplings, can already violate some of the standard predictions.

Beyond OGM

- Gravitino LSP
- Small A terms
- Sum rules

Ø

- · Gaugine unification
- @ Sfermion mass hierarchy
- @ Bine or slepton NLSP
- Positive sfermion masses

True only in certain models

Hidden sector at g=0

- Start by analyzing the hidden sector at g=0.
 Assume for simplicity G=U(1).
- Global currents and their correlators are natural objects to study.
- Try to understand general properties of the theory before we know the underlying Lagrangian.

Current Supermultiplet

 Current sits in a real linear supermultiplet defined by:

 $\overline{\mathcal{J}} = \mathcal{J}(x, \theta, \overline{\theta}), \qquad D^2 \mathcal{J} = \overline{D}^2 \mathcal{J} = 0$

In components:

SUSY generalization of

 $\mathcal{J} = (J) + i \theta j - i \theta \bar{j} - \theta \sigma^{\mu} \bar{\theta} j_{\mu}$ $+\frac{1}{2}\theta\theta\bar{\theta}\bar{\sigma}^{\mu}\partial_{\mu}j-\frac{1}{2}\bar{\theta}\bar{\bar{\theta}}\bar{\bar{\theta}}\theta\sigma^{\mu}\partial_{\mu}\bar{j}-\frac{1}{4}\theta\theta\bar{\theta}\bar{\theta}\Box J$

ordinary U(1) current, satisfies

Current superfield

 $\mathcal{J} = J + i\theta j - i\bar{\theta}\bar{j} - \theta\sigma^{\mu}\bar{\theta}j_{\mu} + \dots$

Nonzero two-point functions constrained by Lorentz invariance, current conservation:

 $\langle J(x)J(0)\rangle = x^{-4}C_0(x^2M^2)$ $\langle j_{\alpha}(x)\bar{j}_{\dot{\alpha}}(0)\rangle = -i\sigma^{\mu}_{\alpha\dot{\alpha}}\partial_{\mu} \left(x^{-4}C_{1/2}(x^2M^2)\right)$ $\langle j_{\mu}(x)j_{\nu}(0)\rangle = (\eta_{\mu\nu}\partial^2 - \partial_{\mu}\partial_{\nu}) \left(x^{-4}C_1(x^2M^2)\right)$ $\langle j_{\alpha}(x)j_{\beta}(0)\rangle = \epsilon_{\alpha\beta}x^{-5}B(x^2M^2)$

Complex

(Remember: M = scale of SUST in hidden sector)

SUSY limit

If SUSY is unbroken, can show:

$$C_0(x) = C_{1/2}(x) = C_1(x), \qquad B(x) = 0$$

More generally, SUSY broken spontaneously, so at short distance must be restored:

 $\lim_{x \to 0} C_0(x), \ C_{1/2}(x), \ C_1(x) = c ; \quad \lim_{x \to 0} B(x) = 0$

@ FT to momentum space is log divergent:

 $\tilde{C}_0(p), \ \tilde{C}_{1/2}(p), \ \tilde{C}_1(p) \sim c \log \frac{\Lambda}{p} + finite \ ; \quad \tilde{B}(p) \sim finite$

Coupling to visible sector

Weakly gauge G=U(1)

$$\mathcal{L}_{int} = 2g \int d^4 \theta \mathcal{J} \mathcal{V} + \dots = g(JD - \lambda j - \bar{\lambda}\bar{j} - j^{\mu}V_{\mu}) + \dots$$

Integrate out hidden sector exactly.

• Effective Lagrangian at $\mathcal{O}(g^2)$:

$$\delta \mathcal{L}_{eff} = \frac{1}{2} g^2 \tilde{C}_0(p^2) D^2 - g^2 \tilde{C}_{1/2}(p^2) i\lambda \sigma^\mu \partial_\mu \bar{\lambda} - \frac{1}{4} g^2 \tilde{C}_1(p^2) F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} g^2 (M \tilde{B}_{1/2}(p^2) \lambda \lambda + c.c.)$$

Beta function

$$\delta \mathcal{L}_{eff} = \frac{1}{2} g^2 \tilde{C}_0(p^2) D^2 - g^2 \tilde{C}_{1/2}(p^2) i\lambda \sigma^\mu \partial_\mu \bar{\lambda} - \frac{1}{4} g^2 \tilde{C}_1(p^2) F_{\mu\nu} F^{\mu\nu} - \frac{1}{2} g^2 (M \tilde{B}_{1/2}(p^2) \lambda \lambda + c.c.)$$

 Integrating out the hidden sector changes the U(1) beta function.

$$\tilde{C}_a \sim c \log \frac{\Lambda}{M} \Rightarrow \Delta b = -(2\pi)^4 c$$

c = hidden sector contrib. to beta function

MSSM Soft Masses

Straightforward to generalize to $SU(3) \times SU(2) \times U(1)$.

 $M_r = g_r^2 M \tilde{B}^{(r)}(0), \quad r = 1, 2, 3$

Three independent complex gaugino masses. So gaugino unification not guaranteed. GGM has SUSY CP problem?

MSSM Soft Masses

Straightforward to generalize to SU(3)xSU(2)xU(1).

$$m_{\tilde{f}}^2 = \sum_{r=1}^3 g_r^4 c_2(f;r) A_r$$

 $A_r \equiv -\int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2} \Big(3\tilde{C}_1^{(r)}(p^2/M^2) - 4\tilde{C}_{1/2}^{(r)}(p^2/M^2) + \tilde{C}_0^{(r)}(p^2/M^2) \Big)$

Sfermion masses not necessarily positive. Indeed, can find simple examples where they are negative. E.g. U(1)' D-term SUSY. (Nakayama et al,...)

Typical momentum in sfermion integral is O(M) -- can't be computed in low-energy theory.

MSSM Soft Masses

Straightforward to generalize to SU(3)xSU(2)xU(1). $m_{\tilde{f}}^2 = \sum_{r=1}^{3} g_r^4 c_2(f;r) A_r$

 $A_r \equiv -\overline{\int \frac{d^4p}{(2\pi)^4} \frac{1}{p^2} \left(3\tilde{C}_1^{(r)}(p^2/M^2) - 4\tilde{C}_{1/2}^{(r)}(p^2/M^2) + \tilde{C}_0^{(r)}(p^2/M^2) \right)}$

- Sfermion masses must be finite -- constraints on two-point functions at $\mathcal{O}(1/p^2)$.
- 3 independent real parameters -- sfermion masses not tied to gauge couplings or to gaugino masses.

Rewriting the soft masses

Buican, Meade, Seiberg, DS; to appear)

 $\langle Q^2 J(x) J(0) \rangle = x^{-5} B(x)$ $\langle Q^4 J(x) J(0) \rangle = \partial^2 \left(x^{-4} (3C_1(x) - 4C_{1/2}(x) + C_0(x)) \right)$

Ocheck: vanish when SUSY is unbroken.

GGM analogue of OGM relations (more precise connection? cf. Distler & Robbins; Intriligator & Sudano)

$$M_{\lambda} \sim F, \qquad m_{\tilde{f}}^2 \sim |F|^2$$

All the information contained within the OPE of J with itself. Can use this to prove convergence of sfermion mass integral.

Sum Rules

$$m_{\tilde{f}}^2 = \sum_{r=1}^3 g_r^4 c_2(f;r) A_r$$

The Five MSSM sfermion masses f=Q,U,D,L,E are given in terms of 3 parameters $A_{r=1,2,3}$

So there must be 2 relations (per generation)

$$\operatorname{Tr} Ym^2 = \operatorname{Tr} (B - L)m^2 = 0$$

 Corrections: sum rules true at the scale M. (Small) corrections from RG and EWSB.

Summary

- We have constructed a framework for analyzing general models of gauge mediation: arbitrary hidden sectors coupled to the MSSM via SM gauge interactions.
- We used our framework to understand the general predictions of gauge mediation.
 - Parameter space: 3 complex parameters (gaugino masses) and 3 real parameters (sfermion masses)
- Our framework is suitable for analyzing strongly-coupled hidden sectors.
 (cf. Ooguri, Ookouchi, Park & Song)

Outlook: Exploring GGM

- Can one build (simple) models which cover the entire parameter space of GGM? What is the minimal construction?
- Carpenter, Dine, Festuccia & Mason exhibit generalizations of OGM that have the right number of parameters (3+3)...

Outlook

- Connections to string theory?
 - Currents and their correlators appear naturally in the AdS/CFT correspondence. Can we use AdS/CFT to study strongly-coupled hidden sectors?
- Main outstanding challenge for gauge mediation: mu/Bmu problem.
 - Can translate existing approaches into GGM framework, but can the framework teach us something new?

Messenger Parity

 $\langle J \rangle = \zeta$

One point function of J can also contribute to the sfermion masses:

 $\delta m_{\tilde{f}}^2 = g_1^2 Y_f \zeta$

 Tree-level in effective theory. Corresponds to FI parameter.

The Can lead to tachyonic sleptons. Forbid with "messenger parity": $\mathcal{J} \rightarrow -\mathcal{J}$