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The LHC is 
around the corner
across th

e street
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SUSY and its breaking
Suppose we find SUSY at the LHC.

SUSY must be broken spontaneously 
(dynamically) in a separate hidden sector.

Explaining how SUSY is broken and 
communicated to the SSM will be one of the 
great challenges of our time.

Hidden sector:
SUSY+...

Visible sector:
MSSM+...
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Gauge mediation is a promising framework for 
communicating SUSY-breaking to the SSM.

Its advantages include:
Automatic flavor universality (no FCNCs)

Viable spectrum

Calculability

Distinctive phenomenology

Hidden sector:
SUSY+...

Gauge Mediation

Visible sector:
MSSM+...SU(3)xSU(2)xU(1)

4



Motivation

What are the most general predictions/
parameters of gauge mediation? 

Especially important question in the LHC era. 

To date many models of gauge mediation have 
been constructed.

However, it has not been clear up to now 
which features of these models are general 
and which are specific.
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Spurion for hidden sector SUSY:

Messengers    in real representation of 
receive tree-level SUSY mass splittings. 

Loops of the messengers and SM gauge 
fields communicate SUSY to the MSSM.

Ordinary gauge mediation
(Dine, Nelson, Nir, Shirman, …)

〈X〉 = M + θ2F

φ

W = λXφ2

GSM
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1-loop gaugino masses:

2-loop sfermion mass-squareds:

Figure 6.3: Contributions to the MSSM gaugino masses
in gauge-mediated supersymmetry breaking models come
from one-loop graphs involving virtual messenger parti-
cles.

B̃, W̃ , g̃

〈FS〉

〈S〉

Replacing S and FS by their VEVs, one finds quadratic mass terms in the potential for the messenger
scalar leptons:

V = |y2〈S〉|2(|!|2 + |!|2) + |y3〈S〉|2(|q|2 + |q|2)
−

(
y2〈FS〉!! + y3〈FS〉qq + c.c.

)

+ quartic terms. (6.49)

The first line in eq. (6.49) represents supersymmetric mass terms that go along with eq. (6.44), while
the second line consists of soft supersymmetry-breaking masses. The complex scalar messengers !, !
thus obtain a squared-mass matrix equal to:

( |y2〈S〉|2 −y∗2〈F ∗
S〉

−y2〈FS〉 |y2〈S〉|2
)

(6.50)

with squared mass eigenvalues |y2〈S〉|2 ± |y2〈FS〉|. In just the same way, the scalars q, q get squared
masses |y3〈S〉|2 ± |y3〈FS〉|.

So far, we have found that the effect of supersymmetry breaking is to split each messenger super-
multiplet pair apart:

!, ! : m2
fermions = |y2〈S〉|2 , m2

scalars = |y2〈S〉|2 ± |y2〈FS〉| , (6.51)

q, q : m2
fermions = |y3〈S〉|2 , m2

scalars = |y3〈S〉|2 ± |y3〈FS〉| . (6.52)

The supersymmetry violation apparent in this messenger spectrum for 〈FS〉 $= 0 is communicated to
the MSSM sparticles through radiative corrections. The MSSM gauginos obtain masses from the 1-loop
Feynman diagram shown in Figure 6.3. The scalar and fermion lines in the loop are messenger fields.
Recall that the interaction vertices in Figure 6.3 are of gauge coupling strength even though they do not
involve gauge bosons; compare Figure 3.3g. In this way, gauge-mediation provides that q, q messenger
loops give masses to the gluino and the bino, and !, ! messenger loops give masses to the wino and
bino fields. Computing the 1-loop diagrams, one finds [142] that the resulting MSSM gaugino masses
are given by

Ma =
αa

4π
Λ, (a = 1, 2, 3), (6.53)

in the normalization for αa discussed in section 5.4, where we have introduced a mass parameter

Λ ≡ 〈FS〉/〈S〉 . (6.54)

(Note that if 〈FS〉 were 0, then Λ = 0 and the messenger scalars would be degenerate with their
fermionic superpartners and there would be no contribution to the MSSM gaugino masses.) In contrast,
the corresponding MSSM gauge bosons cannot get a corresponding mass shift, since they are protected
by gauge invariance. So supersymmetry breaking has been successfully communicated to the MSSM
(“visible sector”). To a good approximation, eq. (6.53) holds for the running gaugino masses at an RG
scale Q0 corresponding to the average characteristic mass of the heavy messenger particles, roughly of
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Mr=1,2,3 ∼
αr

4π

F

M

Ordinary gauge mediation
(Dine, Nelson, Nir, Shirman, …)

Figure 6.4: MSSM scalar squared masses in gauge-mediated supersymmetry breaking models arise in
leading order from these two-loop Feynman graphs. The heavy dashed lines are messenger scalars, the
solid lines are messenger fermions, the wavy lines are ordinary Standard Model gauge bosons, and the
solid lines with wavy lines superimposed are the MSSM gauginos.

order Mmess ∼ yI〈S〉 for I = 2, 3. The running mass parameters can then be RG-evolved down to the
electroweak scale to predict the physical masses to be measured by future experiments.

The scalars of the MSSM do not get any radiative corrections to their masses at one-loop order.
The leading contribution to their masses comes from the two-loop graphs shown in Figure 6.4, with
the messenger fermions (heavy solid lines) and messenger scalars (heavy dashed lines) and ordinary
gauge bosons and gauginos running around the loops. By computing these graphs, one finds that each
MSSM scalar φi gets a squared mass given by:

m2
φi

= 2Λ2

[(
α3

4π

)2

C3(i) +
(

α2

4π

)2

C2(i) +
(

α1

4π

)2

C1(i)

]

, (6.55)

with the quadratic Casimir invariants Ca(i) as in eqs. (5.27)-(5.30). The squared masses in eq. (6.55)
are positive (fortunately!).

The terms au, ad, ae arise first at two-loop order, and are suppressed by an extra factor of αa/4π
compared to the gaugino masses. So, to a very good approximation one has, at the messenger scale,

au = ad = ae = 0, (6.56)

a significantly stronger condition than eq. (5.19). Again, eqs. (6.55) and (6.56) should be applied at
an RG scale equal to the average mass of the messenger fields running in the loops. However, evolving
the RG equations down to the electroweak scale generates non-zero au, ad, and ae proportional to the
corresponding Yukawa matrices and the non-zero gaugino masses, as indicated in section 5.5. These
will only be large for the third-family squarks and sleptons, in the approximation of eq. (5.2). The
parameter b may also be taken to vanish near the messenger scale, but this is quite model-dependent,
and in any case b will be non-zero when it is RG-evolved to the electroweak scale. In practice, b can be
fixed in terms of the other parameters by the requirement of correct electroweak symmetry breaking,
as discussed below in section 7.1.

Because the gaugino masses arise at one-loop order and the scalar squared-mass contributions
appear at two-loop order, both eq. (6.53) and (6.55) correspond to the estimate eq. (6.27) for msoft, with
Mmess ∼ yI〈S〉. Equations (6.53) and (6.55) hold in the limit of small 〈FS〉/yI〈S〉2, corresponding to
mass splittings within each messenger supermultiplet that are small compared to the overall messenger
mass scale. The sub-leading corrections in an expansion in 〈FS〉/yI〈S〉2 turn out [143] to be quite small
unless there are very large messenger mass splittings.

The model we have described so far is often called the minimal model of gauge-mediated supersym-
metry breaking. Let us now generalize it to a more complicated messenger sector. Suppose that q, q
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m2
f̃
∼

3∑

r=1

c2(f ; r)
(αr

4π

)2
(

F

M

)2
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Predictions of (O)GM
Gravitino LSP

No FCNCs

Small A terms

...

Gaugino unification

Sfermion mass hierarchy

Bino or slepton NLSP

Positive sfermion masses

....

Always true.
Follows from general 

considerations.}
True only in 

certain models}
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Beyond OGM

Large class of simple, renormalizable 
extensions of OGM. 
“(Extra)Ordinary Gauge Mediation” 
(Cheung, Fitzpatrick, DS)

By including doublet/triplet splitting in the 
messenger couplings, can already violate 
some of the standard predictions.

W = λijXφiφ̃j + mijφiφ̃j + fX

φi ∈ 5, φ̃i ∈ 5
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Beyond OGM
Gravitino LSP

No FCNCs

Small A terms

Sum rules 

Gaugino unification

Sfermion mass hierarchy

Bino or slepton NLSP

Positive sfermion masses

....

True in general

True only in 
certain models

}
}
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General Gauge Mediation

Theory decouples into separate hidden and 
visible sectors in g->0 limit. 

(Messengers, if present, are part of the hidden sector.)

Hidden sector:
spontaneously breaks SUSY at a scale M

has a weakly-gauged global symmetry         

Hidden sector
SUSY+...

Visible sector:
MSSM+...SU(3)xSU(2)xU(1)

G ⊃ GSM
11

Hidden sector at g=0
Start by analyzing the hidden sector at g=0. 
Assume for simplicity G=U(1).

Global currents and their correlators are 
natural objects to study.

Try to understand general properties of the 
theory before we know the underlying 
Lagrangian. 
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Current Supermultiplet

Current sits in a real linear supermultiplet 
defined by:

In components:

J = J (x, θ, θ̄), D2J = D̄2J = 0

J = J + iθj − iθ̄j̄ − θσµθ̄jµ

+
1
2
θθθ̄σ̄µ∂µj − 1

2
θ̄θ̄θσµ∂µj̄ − 1

4
θθθ̄θ̄!J

ordinary U(1) current, satisfies

SUSY generalization of 
current conservation

∂µjµ = 0
13

Current superfield

Nonzero two-point functions constrained by 
Lorentz invariance, current conservation:

(Remember: M = scale of SUSY in hidden sector)

Real

Complex

J = J + iθj − iθ̄j̄ − θσµθ̄jµ + . . .

〈J(x)J(0)〉 = x−4C0(x2M2)
〈jα(x)j̄α̇(0)〉 = −iσµ

αα̇∂µ

(
x−4C1/2(x2M2)

)

〈jµ(x)jν(0)〉 = (ηµν∂2 − ∂µ∂ν)
(
x−4C1(x2M2)

)

〈jα(x)jβ(0)〉 = εαβx−5B(x2M2)
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SUSY limit
If SUSY is unbroken, can show:

More generally, SUSY broken spontaneously, 
so at short distance must be restored:

FT to momentum space is log divergent:

lim
x→0

C0(x), C1/2(x), C1(x) = c ; lim
x→0

B(x) = 0

C̃0(p), C̃1/2(p), C̃1(p) ∼ c log
Λ
p

+ finite ; B̃(p) ∼ finite

C0(x) = C1/2(x) = C1(x), B(x) = 0
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Coupling to visible sector
Weakly gauge G=U(1)        

Integrate out hidden sector exactly. 

Effective Lagrangian at        :

Lint = 2g

∫
d4θJV + · · · = g(JD − λj − λ̄j̄ − jµVµ) + . . .

O(g2)

δLeff =
1
2
g2C̃0(p2)D2 − g2C̃1/2(p2)iλσµ∂µλ̄− 1

4
g2C̃1(p2)FµνFµν

−1
2
g2(MB̃1/2(p2)λλ + c.c.)
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Beta function

Integrating out the hidden sector changes 
the U(1) beta function.

c = hidden sector contrib. to beta function

C̃a ∼ c log
Λ
M
⇒ ∆b = −(2π)4c

δLeff =
1
2
g2C̃0(p2)D2 − g2C̃1/2(p2)iλσµ∂µλ̄− 1

4
g2C̃1(p2)FµνFµν

−1
2
g2(MB̃1/2(p2)λλ + c.c.)
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Soft masses follow from the effective action:

U(1) gaugino:

sfermion:

Soft Masses

db c

a

e

Fig. 1: The graphical description of the contributions of the two point functions

to the soft masses. (a) represents the gaugino mass contribution from 〈jαjβ〉. In

(b)-(e) the various contributions to the soft scalar masses are given: (b) 〈J〉, (c)

〈JJ〉, (d) 〈jαjα̇〉, and (e) 〈jµjν〉. It should be stressed that the blobs in the figures

represent hidden sector correlation functions. The leading contribution in theories

with messengers arises from one loop of the messengers, but in general when there

are no messengers, it is more complicated.

So far we have discussed the simpler case of a single U(1) gauge group here, in the

case of the actual MSSM one has to consider the separate SU(3), SU(2) and U(1) gauge

groups. We will label the gauge groups by r = 3, 2, 1, respectively. If we want the gauge

couplings to unify, then the value of c(r) = c must be independent of r (assuming SU(5)

normalization of the U(1) factor of course) and we want the thresholds C̃(r)
a (0) to depend

weakly on r. Moreover, if we want perturbative unification, then there is an upper bound

on the magnitude of c. These are examples of some completely general constraints on the

SUSY breaking sector that can be derived using our formalism.

Now, it is straightforward to find the sfermion and gaugino masses of the MSSM.

In Figure 1 we show the diagrams involving the current correlation functions which are

responsible for the MSSM soft masses.

The gaugino masses arise at tree level in the effective theory (3.2); to leading order
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m2
f̃

= g4A

A ≡ −
∫

d4p

(2π)4
1
p2

(
3C̃1(p2/M2)− 4C̃1/2(p2/M2) + C̃0(p2/M2)

)

db c

a

e
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Mλ = g2MB̃(0)
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MSSM Soft Masses
Straightforward to generalize to SU(3)xSU(2)xU(1).

Three independent complex gaugino masses. So gaugino 
unification not guaranteed. GGM has SUSY CP problem?

z

Mr = g2
rMB̃(r)(0), r = 1, 2, 3
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MSSM Soft Masses
Straightforward to generalize to SU(3)xSU(2)xU(1).

Sfermion masses not necessarily positive. Indeed, can 
find simple examples where they are negative. E.g. U(1)’ 
D-term SUSY. (Nakayama et al,...)

Typical momentum in sfermion integral is O(M) -- can’t 
be computed in low-energy theory.

m2
f̃

=
3∑

r=1

g4
r c2(f ; r)Ar

Ar ≡ −
∫

d4p

(2π)4
1
p2

(
3C̃(r)

1 (p2/M2)− 4C̃(r)
1/2(p

2/M2) + C̃(r)
0 (p2/M2)

)
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MSSM Soft Masses
Straightforward to generalize to SU(3)xSU(2)xU(1).

Sfermion masses must be finite -- constraints on two-
point functions at          .

3 independent real parameters -- sfermion masses not 
tied to gauge couplings or to gaugino masses.

m2
f̃

=
3∑

r=1

g4
r c2(f ; r)Ar

Ar ≡ −
∫

d4p

(2π)4
1
p2

(
3C̃(r)

1 (p2/M2)− 4C̃(r)
1/2(p

2/M2) + C̃(r)
0 (p2/M2)

)

O(1/p2)
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Rewriting the soft masses
(Buican, Meade, Seiberg, DS; to appear)

Check: vanish when SUSY is unbroken.

GGM analogue of OGM relations (more precise 
connection? cf. Distler & Robbins; Intriligator & Sudano)

All the information contained within the OPE 
of J with itself. Can use this to prove 
convergence of sfermion mass integral.

Mλ ∼ F, m2
f̃
∼ |F |2

〈Q2J(x)J(0)〉 = x−5B(x)

〈Q4J(x)J(0)〉 = ∂2
(
x−4(3C1(x) − 4C1/2(x) + C0(x))

)
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Sum Rules

Five MSSM sfermion masses f=Q,U,D,L,E are 
given in terms of 3 parameters 

So there must be 2 relations (per generation)

Corrections: sum rules true at the scale M. (Small) 
corrections from RG and EWSB.

TrY m2 = Tr (B − L)m2 = 0

Ar=1,2,3

m2
f̃

=
3∑

r=1

g4
r c2(f ; r)Ar

Quadratic Casmir
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Summary
We have constructed a framework for 
analyzing general models of gauge mediation: 
arbitrary hidden sectors coupled to the 
MSSM via SM gauge interactions.

We used our framework to understand the 
general predictions of gauge mediation.

Parameter space: 3 complex parameters (gaugino 
masses) and 3 real parameters (sfermion masses)

Our framework is suitable for analyzing 
strongly-coupled hidden sectors. 
(cf. Ooguri, Ookouchi, Park & Song)

24



Outlook: Exploring GGM

Can one build (simple) models which cover 
the entire parameter space of GGM? What is 
the minimal construction?

Carpenter, Dine, Festuccia & Mason exhibit 
generalizations of OGM that have the right 
number of parameters (3+3)...
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Outlook

Connections to string theory? 

Currents and their correlators appear naturally in 
the AdS/CFT correspondence. Can we use AdS/CFT 
to study strongly-coupled hidden sectors?

Main outstanding challenge for gauge 
mediation: mu/Bmu problem. 

Can translate existing approaches into GGM 
framework, but can the framework teach us 
something new?
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The LHC will judge...

Not much time left to get our story straight.

 The LHC is coming and it will put many 
models to the test.
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Messenger Parity

One point function of J can also contribute 
to the sfermion masses:

Tree-level in effective theory. Corresponds to 
FI parameter.

Can lead to tachyonic sleptons. Forbid with 
“messenger parity”:

〈J〉 = ζ

db c

a

e
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δm2
f̃

= g2
1Yfζ

J → −J
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