Heterotic Standard Models

Ron Donagi (Penn)

19 August 2008 Strings 08 @ CERN

Heterotic Standard Models The High Country region of the string landscape

- Goal: Study string vacua which reproduce the MSSM (or close cousins thereof) at low energies
 - String landscape is huge, but High Country region may be much smaller
- Questions:
 - How many such vacua?
 - Do they have common properties (predictions)?
 - Constraints coming from string UV completion?
- Crucial: Must require global consistency of the string vacuum

A particular corner of the string landscape:

 $E_8 \times E_8$ heterotic string on $\mathbb{R}^{3,1} \times X$ with gauge instanton V, where X is a smooth compact Calabi-Yau threefold

<section-header>Heterotic Standard Models The High Country region of the string landscape • Goal: Study string vacua which reproduce the MSSM (or close cousins thereof) at low energies • String landscape is huge, but High Country region may be much smaller • Ouestions • How many such vacua? • On they have common properties (predictions)? • Constraints coming from string UV completion? • Constraints coming from string UV completion? • String Models Consistency of the string vacua • String Models Consistency of the string vacua • String Models Consistency of the string vacua • String Models Consistency of the string vacua

Heterotic Standard Models The High Country region of the string landscape

• Goal: Study string vacua which reproduce the MSSM (or close cousins thereof) at low energies

 String landscape is huge, but High Country region may be much smaller

Questions:

- How many such vacua?
- Do they have common properties (predictions)?
- Constraints coming from string UV completion?
- Crucial: Must require global consistency of the string vacuum

 $E_8 \times E_8$ heterotic string on $\mathbb{R}^{3,1} \times X$ with gauge instanton V, where X is a smooth compact Calabi-Yau threefold

Heterotic Standard Models The High Country region of the string landscape

- Goal: Study string vacua which reproduce the MSSM (or close cousins thereof) at low energies
 - String landscape is huge, but High Country region may be much smaller

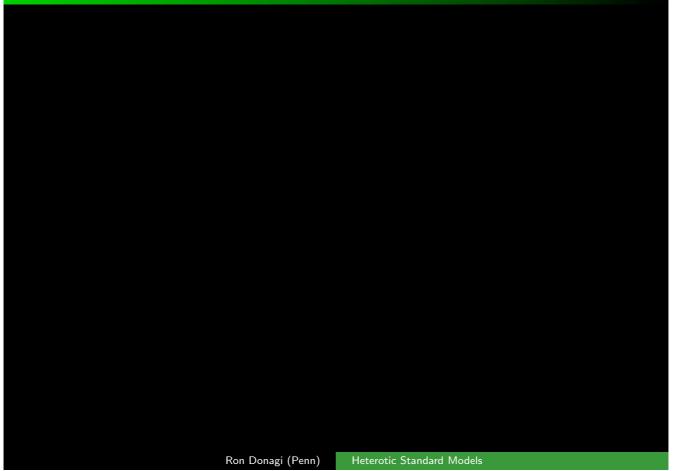
• Questions:

- How many such vacua?
- Do they have common properties (predictions)?
- Constraints coming from string UV completion?
- Crucial: Must require global consistency of the string vacuum

A particular corner of the string landscape:

 $E_8 \times E_8$ heterotic string on $\mathbb{R}^{3,1} \times X$ with gauge instanton V, where X is a smooth compact Calabi-Yau threefold

Outline


References

Refe	rences:
BD1	[Bouchard, D] An SU(5) heterotic standard model Phys. Lett. B633 2006
BCD	[Bouchard, Cvetič, D] Tri-linear couplings Nuclear Phys. B745 2006
BD2	[Bouchard, D] On a class of non-simply connected CY3s Comm.Numb.Theor.Phys.2 2008
BD3	[Bouchard, D] On heterotic model constraints hep-th 0804-2096
DW	[D, Wendland] On orbifolds and free fermion constructions hep-th 0808-xxxx
Bak	[Bak] Penn thesis
BBDG	[Bak, Bouchard, D, Gross] In Prep

Ron Donagi (Penn)

Heterotic Standard Models

Outline

SUSY heterotic vacua

Data:

- X: smooth compact Calabi-Yau threefold
- $V \rightarrow X$: hol. vector bundle with structure group $G \subset E_8$

SUSY heterotic vacua

Data:

- X: smooth compact Calabi-Yau threefold
- $V \rightarrow X$: hol. vector bundle with structure group $G \subset E_8$

Consistency constraints:

- V is polystable w.r.t a Kähler class [DUY: connection soln to HYM]B
- $c_2(X) c_2(V) = [M5]$ [anomaly cancellation with M5-branes]B

SUSY heterotic vacua

Data:

- X: smooth compact Calabi-Yau threefold
- $V \rightarrow X$: hol. vector bundle with structure group $G \subset E_8$

Consistency constraints:

- V is polystable w.r.t a Kähler class [DUY: connection soln to HYM]B
- $c_2(X) c_2(V) = [M5]$ [anomaly cancellation with M5-branes]B

Phenomenological requirements:

- Commutant H of G in E_8 is low-energy GUT group
- π₁(X) = F to break H to MSSM gauge group with discrete
 Wilson line
- Various extra phenomenological constraints:
 - $c_1(V) = 0 \ [G = SU(n)]B$
 - $c_3(V) = \pm 6$ [3 generations]B
 - $H^1(V), H^2(V), H^1(\wedge^2 V), H^2(\wedge^2 V), \dots$ [Particle spectrum]B
 - Triple products of cohomology groups, ... [Tri-linear couplings]B

Ron Donagi (Penn) Heterotic Standard Models

Summary and examples

Heterotic vacuum:

- Non-simply connected Calabi-Yau threefold X
- 2 Polystable bundle $V \rightarrow X$ satisfying a lot of constraints

Examples:

- $\pi_1(X) = \mathbb{Z}_2$, G = SU(5)
 - *SU*(5) GUT
 - $SU(5) \xrightarrow{\mathbb{Z}_2} SU(3) \times SU(2) \times U(1)$
- $\pi_1(X) = \mathbb{Z}_6$ or $(\mathbb{Z}_3)^2$, G = SU(4)
 - *SO*(10) GUT
 - $SO(10) \stackrel{\mathbb{Z}_6}{\longrightarrow} SU(3) \times SU(2) \times U(1) \times U(1)$

Summary and examples

Heterotic vacuum:

- Non-simply connected Calabi-Yau threefold X
- 2 Polystable bundle $V \rightarrow X$ satisfying a lot of constraints

Examples:

•
$$\pi_1(X) = \mathbb{Z}_2, \ G = SU(5)$$

• $SU(5) \ \text{GUT}$
• $SU(5) \xrightarrow{\mathbb{Z}_2} SU(3) \times SU(2) \times U(1)$

•
$$\pi_1(X) = \mathbb{Z}_6$$
 or $(\mathbb{Z}_3)^2$, $G = SU(4)$

- *SO*(10) GUT
- $SO(10) \xrightarrow{\mathbb{Z}_6} \xrightarrow{\text{or } (\mathbb{Z}_3)^2} SU(3) \times \overline{SU(2)} \times U(1) \times U(1)$

Ron Donagi (Penn)

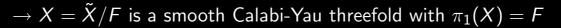
Heterotic Standard Mo

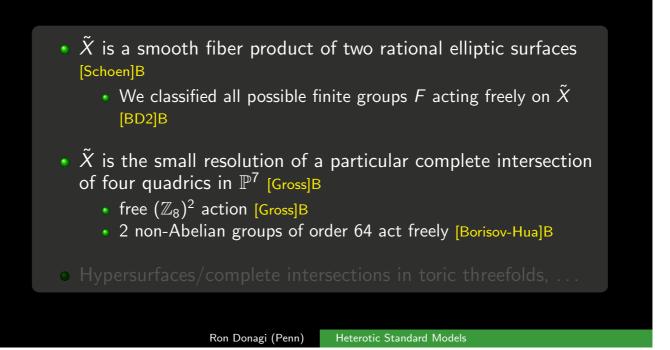
Contine Outline Outline

1st step: Constructing non-simply connected CY 3-folds X

Consider a smooth simply connected Calabi-Yau threefold \tilde{X} admitting a group F of automorphisms acting freely on \tilde{X} $\rightarrow X = \tilde{X}/F$ is a smooth Calabi-Yau threefold with $\pi_1(X) = F$

1st step: Constructing non-simply connected CY 3-folds X


Consider a smooth simply connected Calabi-Yau threefold \tilde{X} admitting a group F of automorphisms acting freely on \tilde{X}


 $\to X = \tilde{X}/F$ is a smooth Calabi-Yau threefold with $\pi_1(X) = F$

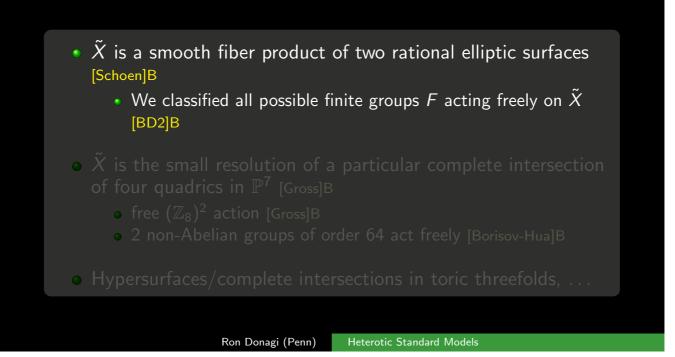
- \tilde{X} is a smooth fiber product of two rational elliptic surfaces [Schoen]B
 - We classified all possible finite groups F acting freely on \tilde{X} [BD2]B
- \hat{X} is the small resolution of a particular complete intersection of four quadrics in \mathbb{P}^7 [Gross]B
 - free $(\mathbb{Z}_8)^2$ action [Gross]B
 - 2 non-Abelian groups of order 64 act freely [Borisov-Hua]B
- Hypersurfaces/complete intersections in toric threefolds, ...

1st step: Constructing non-simply connected CY 3-folds X

Consider a smooth simply connected Calabi-Yau threefold \tilde{X} admitting a group F of automorphisms acting freely on \tilde{X}

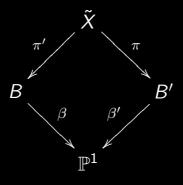
1st step: Constructing non-simply connected CY 3-folds X

Consider a smooth simply connected Calabi-Yau threefold \tilde{X} admitting a group F of automorphisms acting freely on \tilde{X}


 $\to X = ilde{X}/F$ is a smooth Calabi-Yau threefold with $\pi_1(X) = F$

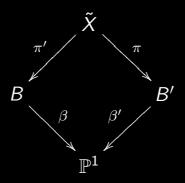
- \tilde{X} is a smooth fiber product of two rational elliptic surfaces [Schoen]B
 - We classified all possible finite groups F acting freely on \tilde{X} [BD2]B
- \tilde{X} is the small resolution of a particular complete intersection of four quadrics in \mathbb{P}^7 [Gross]B
 - free $(\mathbb{Z}_8)^2$ action [Gross]B
 - 2 non-Abelian groups of order 64 act freely [Borisov-Hua]B
- Hypersurfaces/complete intersections in toric threefolds, ...

1st step: Constructing non-simply connected CY 3-folds X


Consider a smooth simply connected Calabi-Yau threefold \tilde{X} admitting a group F of automorphisms acting freely on \tilde{X}

 $\to X = \tilde{X}/F$ is a smooth Calabi-Yau threefold with $\pi_1(X) = F$

Free quotients of Schoen's threefolds


Let B and B' be RES, and $\tilde{X} = B \times_{\mathbb{P}^1} B'$ a smooth fiber product:

Idea: Consider special B and B' s.t. \tilde{X} admits a free group of automorphisms $F_{\tilde{X}}$.

Free quotients of Schoen's threefolds

Let B and B' be RES, and $\tilde{X} = B \times_{\mathbb{P}^1} B'$ a smooth fiber product:

Idea: Consider special *B* and *B'* s.t. \tilde{X} admits a free group of automorphisms $F_{\tilde{X}}$.

Ron Donagi (Penn)

Heterotic Standard N

Free quotients of Schoen's threefolds

- Automorphisms $\tau_{\tilde{X}}: \tilde{X} \to \tilde{X}$ have the form $\tau_{\tilde{X}} = \tau_B \times_{\mathbb{P}^1} \tau_{B'}$
- Classification of $(\tilde{X}, F_{\tilde{X}})$ reduces to classification of (B, F_B) , for suitable groups of automorphisms F_B

We produced such a classification, and we obtained a large class of \tilde{X} with $F_{\tilde{X}}$ one of the following: [BD2]B

$$(\mathbb{Z}_3)^2, \quad \mathbb{Z}_4 \times \mathbb{Z}_2, \quad \mathbb{Z}_6, \quad \mathbb{Z}_5, \ \mathbb{Z}_4, \quad (\mathbb{Z}_2)^2, \quad \mathbb{Z}_3, \quad \mathbb{Z}_2$$

2nd step: Constructing stable vector bundles $V \rightarrow X$

Fourier-Mukai transform [FMW, D]B

- Use dual Fourier-Mukai data to construct the bundle
- Needs X to be fibered (usually torus-fibered, but can be generalized)
- Pros: Easy to prove stability from FM data [FMW]B
- Cons: If start with $\tilde{V} \to \tilde{X}$, invariance under $F_{\tilde{X}}$ hard to prove

Ron Donagi (Penn) Heterotic Standard Models

2nd step: Constructing stable vector bundles $V \rightarrow X$

Fourier-Mukai transform [FMW, D]B

- Use dual Fourier-Mukai data to construct the bundle
- Needs X to be fibered (usually torus-fibered, but can be generalized)
- Pros: Easy to prove stability from FM data [FMW]B
- Cons: If start with $ilde{V} o ilde{X}$, invariance under $F_{ ilde{X}}$ hard to prove
- Serre construction by extension

 $0 \rightarrow V_1 \rightarrow V \rightarrow V_2 \rightarrow 0$

- **Pros**: If start with $\tilde{V} \to \tilde{X}$, invariance easy to prove
- Cons: Stability is hard to prove
- combination of both methods [DOPW]B
- Other methods: monads [AHL]B, Hecke transforms,

2nd step: Constructing stable vector bundles $V \rightarrow X$

Fourier-Mukai transform [FMW, D]B

- Use dual Fourier-Mukai data to construct the bundle
- Needs X to be fibered (usually torus-fibered, but can be generalized)
- Pros: Easy to prove stability from FM data [FMW]B
- Cons: If start with $ilde{V} o ilde{X}$, invariance under $F_{ ilde{X}}$ hard to prove
- Serre construction by extension

 $0 \rightarrow V_1 \rightarrow V \rightarrow V_2 \rightarrow 0$

- Pros: If start with $ilde{V}
 ightarrow ilde{X}$, invariance easy to prove
- Cons: Stability is hard to prove
- To satisfy phenomenological constraints, may need combination of both methods [DOPW]B

Ron Donagi (Penn) Heterotic Standard Models

2nd step: Constructing stable vector bundles $V \rightarrow X$

Fourier-Mukai transform [FMW, D]B

- Use dual Fourier-Mukai data to construct the bundle
- Needs X to be fibered (usually torus-fibered, but can be generalized)
- Pros: Easy to prove stability from FM data [FMW]B
- Cons: If start with $ilde{V} o ilde{X}$, invariance under $F_{ ilde{X}}$ hard to prove
- Serre construction by extension

$$0 \rightarrow V_1 \rightarrow V \rightarrow V_2 \rightarrow 0$$

- **Pros**: If start with $\tilde{V} \to \tilde{X}$, invariance easy to prove
- Cons: Stability is hard to prove
- To satisfy phenomenological constraints, may need combination of both methods [DOPW]B
- Other methods: monads [AHL]B , Hecke transforms, ...

Best (and only) model so far [BD1, BCD]B

- The manifold: $\tilde{X} = B \times_{\mathbb{P}^1} B'$, with special B and B' such that $F_{ ilde{X}} \simeq \mathbb{Z}_2$ acts freely on $ar{ ilde{X}}$

Ron Donagi (Penn) Heterotic Standard Models

Best (and only) model so far [BD1, BCD]B

- The manifold: $\tilde{X} = B \times_{\mathbb{P}^1} B'$, with special B and B' such that $F_{ ilde{X}} \simeq \mathbb{Z}_2$ acts freely on $\hat{ ilde{X}}$
- The bundle: SU(5), \mathbb{Z}_2 -invariant, stable bundle $ilde{V} o ilde{X}$ constructed by

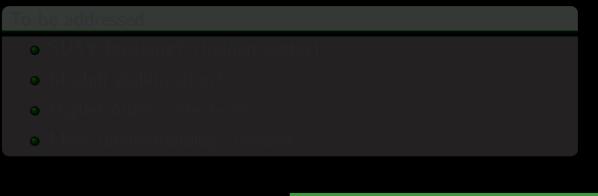
$$0 \rightarrow V_3 \rightarrow \tilde{V} \rightarrow V_2 \rightarrow 0,$$

where V_3 and V_2 are rank 3 and 2 bundles on \tilde{X} constructed using Fourier-Mukai transform

Best (and only) model so far [BD1, BCD]B

- The manifold: $ilde{X} = B imes_{\mathbb{P}^1} B'$, with special B and B' such that $F_{ ilde{X}} \simeq \mathbb{Z}_2$ acts freely on $ilde{X}$
- The bundle: SU(5), \mathbb{Z}_2 -invariant, stable bundle $ilde{V} o ilde{X}$ constructed by

 $0 \rightarrow V_3 \rightarrow \tilde{V} \rightarrow V_2 \rightarrow 0$,


where V_3 and V_2 are rank 3 and 2 bundles on \tilde{X} constructed using Fourier-Mukai transform

• Anomaly is cancelled, either with M5-branes, or without M5-branes but with a non-trivial hidden bundle

Ron Donagi (Penn) Heterotic Standard Models

Phenomenology of this model

- MSSM gauge group $SU(3) \times SU(2) \times U(1)$ with no extra U(1)'s
- Precisely the MSSM massless spectrum with no exotic particles, up to moduli fields
- Semi-realistic tri-linear couplings at tree level
- R-parity is conserved at tree level (proton is stable)
- Higgs μ -terms and (possible) neutrino mass terms

Phenomenology of this model

- MSSM gauge group $SU(3) \times SU(2) \times U(1)$ with no extra U(1)'s
- Precisely the MSSM massless spectrum with no exotic particles, up to moduli fields
- Semi-realistic tri-linear couplings at tree level
- R-parity is conserved at tree level (proton is stable)
- Higgs μ -terms and (possible) neutrino mass terms

To be addressed

- SUSY breaking? (hidden sector)
- Moduli stabilization?
- Higher order corrections?
- More phenomenology needed

Ron Donagi (Penn) Heterotic Standard Models

Outline

Ron Donagi (Penn) Heterotic Standard Models

Other models

Buchmuller, Hamaguchi, Lebedev, Ratz (and many others) $\mathbb{Z}/6$ -orbifolds

Ron Donagi (Penn) Heterotic Standard Models

Other models

- Buchmuller, Hamaguchi, Lebedev, Ratz (and many others) $\mathbb{Z}/6$ -orbifolds
- Braun, He, Ovrut, Pantev $\pi_1(X) = \mathbb{Z}/3 \times \mathbb{Z}/3$, V unstable

Other models

- Buchmuller, Hamaguchi, Lebedev, Ratz (and many others) $\mathbb{Z}/6$ -orbifolds
- Braun, He, Ovrut, Pantev $\pi_1(X) = \mathbb{Z}/3 \times \mathbb{Z}/3$, V unstable
- Faraggi, NAHE: Free Fermionic models $(\mathbb{Z}/2)^n$ orbifolds "non-geometric"

Ron Donagi (Penn) Heterotic Standard Models

Other models

- Buchmuller, Hamaguchi, Lebedev, Ratz (and many others) $\mathbb{Z}/6$ -orbifolds
- Braun, He, Ovrut, Pantev $\pi_1(X) = \mathbb{Z}/3 \times \mathbb{Z}/3$, V unstable
- Faraggi, NAHE: Free Fermionic models $(\mathbb{Z}/2)^n$ orbifolds "non-geometric"
- D, Faraggi: not within a particular class of geometric orbifolds

Other models

- Buchmuller, Hamaguchi, Lebedev, Ratz (and many others)
 Z/6-orbifolds
- Braun, He, Ovrut, Pantev $\pi_1(X) = \mathbb{Z}/3 \times \mathbb{Z}/3$, V unstable
- Faraggi, NAHE: Free Fermionic models (Z/2)ⁿ orbifolds "non-geometric"
- D, Faraggi: not within a particular class of geometric orbifolds
- DW: not a geometric orbifold

Ron Donagi (Penn)

Heterotic Standard Mo

Constructing other realistic models

- Using methods similar to [BD1], we tried to construct realistic bundles on fiber product \tilde{X} with $F_{\tilde{X}} \simeq \mathbb{Z}_6$
 - \rightarrow No realistic bundle [BD3]B
 - Main insight: strong tension between inequalities coming from anomaly cancellation and stability
- Work in progress: physical bundles on Gross' threefold with $\pi_1(X) = (\mathbb{Z}_8)^2$ [BBDG]B
 - We constructed bundles phenomenologically viable at the topological level (up to a few subtleties that remain to be checked), using Fourier-Mukai transform on Abelian surface fibrations, and Hecke transforms
 - Next step: cohomology computation

Constructing other realistic models

- Using methods similar to [BD1], we tried to construct realistic bundles on fiber product $ilde{X}$ with $F_{ ilde{X}}\simeq \mathbb{Z}_6$
 - \rightarrow No realistic bundle [BD3]B
 - Main insight: strong tension between inequalities coming from anomaly cancellation and stability
- Work in progress: physical bundles on Gross' threefold with $\pi_1(X) = (\mathbb{Z}_8)^2$ [BBDG]B
 - We constructed bundles phenomenologically viable at the topological level (up to a few subtleties that remain to be checked), using Fourier-Mukai transform on Abelian surface fibrations. and Hecke transforms
 - Next step: cohomology computation

Ron Donagi (Penn) Heterotic Standard Models

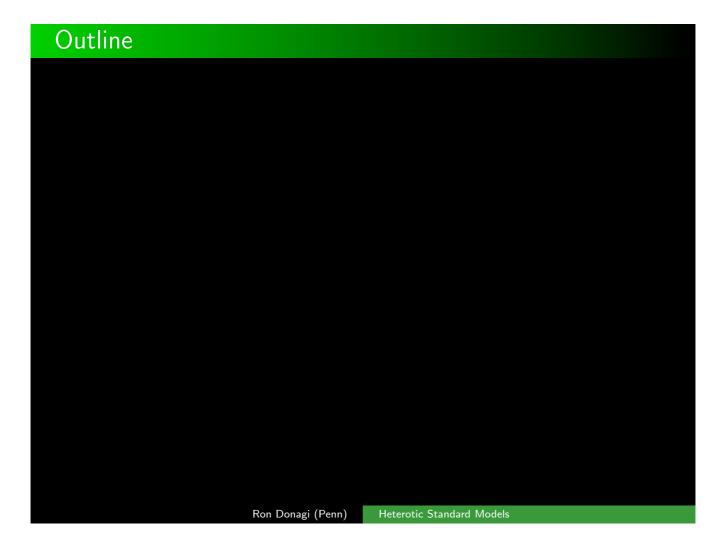
Relaxing the constraints (...)

Recall: strong tension between anomaly cancellation and stability

- In principle, one can "forget" about anomaly cancellation
 - non-SUSY vacua with M5- and anti-M5-branes [B,BB0]B
 - SUSY broken at the compactification scale :-(

- Such infinite familes considered by Acharva-DouglasB in

Recall: strong tension between anomaly cancellation and stability


- In principle, one can "forget" about anomaly cancellation
 - non-SUSY vacua with M5- and anti-M5-branes [B,BB0]B
 - SUSY broken at the compactification scale :-(
- We get infinite families of such non-SUSY vacua with exactly the phenomenological properties above [BD3]B
- Also get infinite families of models on \tilde{X} with $\pi_1(\tilde{X}) = \mathbb{Z}_6$
- One such model on \tilde{X} with $\pi_1(\tilde{X}) = (\mathbb{Z}_3)^2$ [BHOP]B, perhaps more
- Such infinite familes considered by Acharya-DouglasB in

Ron Donagi (Penn) Heterotic Standard Models

Relaxing the constraints (...)

Recall: strong tension between anomaly cancellation and stability

- In principle, one can "forget" about anomaly cancellation
 - non-SUSY vacua with M5- and anti-M5-branes [B,BB0]B
 - SUSY broken at the compactification scale :-(
- We get infinite families of such non-SUSY vacua with exactly the phenomenological properties above [BD3]B
- Also get infinite families of models on \tilde{X} with $\pi_1(\tilde{X}) = \mathbb{Z}_6$
- One such model on $ilde{X}$ with $\pi_1(ilde{X})=\overline{(\mathbb{Z}_3)^2}$ [BHOP]B , perhaps more
- Such infinite familes considered by Acharya-DouglasB in landscape study
 - \rightarrow phenomenological cutoff on scale of SUSY breaking

of orbifolds T^6/G

$T^{6} = E_{1} \times E_{2} \times \overline{E_{3}}$ $0 \to G_{5} \to G \to G_{T}^{0} \to 0 \text{ where } G_{5} \text{ is shifts and } G_{T}^{0} \text{ twists.}$ $G_{T}^{0} = \mathbb{Z}/2 \times \mathbb{Z}/2 \text{ acts } (x, y, z) \mapsto (\pm x, \pm y, \pm z) \text{ with even number of sign changes}$

After some reduction: $\exists G_T \subset G, G_T \rightarrow G_T^{\circ}$ Four inequivalent types of G_T . Use reduction procedure to classify. For each model we calculate:

- Hodge Numbers (via orbifold cohomology)
- Fundamental groups (Wilson lines)
- Some geometry

Effect of discrete torsion, no new Hodge numbers, except mirror-symmetry like interchange $H^{1,1} \iff H^{2,1}$. (Compare: Mirage torsion: Ploger, Ramos-Sanchez, Ratz, Vaudrevange.)

 $T^6 = E_1 \times E_2 \times E_3$ $0 \rightarrow G_S \rightarrow G \rightarrow G_T^0 \rightarrow 0$ where G_S is shifts and G_T^0 twists. $G_T^0 = \mathbb{Z}/2 \times \mathbb{Z}/2$ acts $(x, y, z) \mapsto (\pm x, \pm y, \pm z)$ with even number of sign changes After some reduction: $\exists G_T \subset G, \ G_T \xrightarrow{\sim} G_T^0$ Four inequivalent types of G_T .

Ron Donagi (Penn) Heterotic Standard Models

of orbifolds T^6/G

 $T^6 = E_1 \times E_2 \times E_3$ $0 \to G_S \to G \to G_T^0 \to 0$ where G_S is shifts and G_T^0 twists. $G^0_T = \mathbb{Z}/2 \times \mathbb{Z}/2$ acts $(x, y, z) \mapsto (\pm x, \pm y, \pm z)$ with even number of sign changes After some reduction: $\exists G_T \subset G, \ G_T \xrightarrow{\sim} G_T^0$ Four inequivalent types of G_T . Use reduction procedure to classify. For each model we calculate:

 $T^6 = E_1 \times E_2 \times E_3$ $0 \rightarrow G_S \rightarrow G \rightarrow G_T^0 \rightarrow 0$ where G_S is shifts and G_T^0 twists. $G^0_T = \mathbb{Z}/2 imes \mathbb{Z}/2$ acts $(x, y, z) \mapsto (\pm x, \pm y, \pm z)$ with even number of sign changes After some reduction: $\exists G_T \subset G, \ G_T \xrightarrow{\sim} G_T^0$ Four inequivalent types of G_{T} . Use reduction procedure to classify. For each model we calculate:

- Hodge Numbers (via orbifold cohomology)
- Fundamental groups (Wilson lines)
- Some geometry

Ron Donagi (Penn) Heterotic Standard Models

of orbifolds T^6/G

 $T^6 = E_1 \times E_2 \times E_3$ $0 \to G_S \to G \to G_T^0 \to 0$ where G_S is shifts and G_T^0 twists. $G^0_T = \mathbb{Z}/2 imes \mathbb{Z}/2$ acts $(x, y, z) \mapsto (\pm x, \pm y, \pm z)$ with even number of sign changes After some reduction: $\exists G_T \subset G, \ G_T \xrightarrow{\sim} G_T^0$ Four inequivalent types of G_{T} . Use reduction procedure to classify. For each model we calculate:

- Hodge Numbers (via orbifold cohomology)
- Fundamental groups (Wilson lines)
- Some geometry

Effect of discrete torsion, no new Hodge numbers, except mirror-symmetry like interchange $H^{1,1} \iff H^{2,1}$. (Compare: Mirage torsion: Ploger, Ramos-Sanchez, Ratz, Vaudrevange.)

We list the automorphism groups by rank. For each group \overline{G} we list its twist group G_T , its shift part G_S (if non-empty), the Hodge numbers $h^{1,1}$, $h^{2,1}$ of a small resolution of X/G, the fundamental group $\pi_1(X/G)$, and the list of contributing sectors and their contribution. For the fundamental groups we use the abbreviations:

- A: the extension of \mathbb{Z}_2 by \mathbb{Z}^2 (so $H_1(X) = (\mathbb{Z}_2)^3$)
- B: any extension of $(\mathbb{Z}_2)^2$ by \mathbb{Z}^6 (with various possible $H_1(X)$)
- $C: \mathbb{Z}_2$
- $D: (\mathbb{Z}_2)^2$

A shift element is denoted by a triple $(\epsilon_1, \epsilon_2, \epsilon_3)$, where $\epsilon_i \in E_i$ is a point of order 2, abbreviated as one of $0, 1, \tau, \tau 1 := 1 + \tau$. A twist element is denoted by a triple $(\epsilon_1\delta_1, \epsilon_2\delta_2, \epsilon_3\delta_3)$, where $\epsilon_i \in E_i$ is as above and $\delta_i \in \{\pm\}$ indicates the pure twist part. A two-entry contribution (a, b) adds a units to $h^{1,1}$ and b units to $h^{2,1}$. When b = 0 we abbreviate (a, b) to the single entry contribution a.

Heterotic Standard Models

	-				
	G _T			$(h^{1,1}, h^{2,1})$	π_1
		sectors	contribution		
Rank 0:					
(0 - 1)	(0+, 0-, 0-), (0-, 0+, 0-)			(51, 3)	0
		0+, 0-, 0-	16		
		0-, 0+, 0-	16		
		0-, 0-, 0+	16		
(0 - 2)	(0+, 0-, 0-), (0-, 0+, 1-)			(19, 19)	0
		0+, 0-, 0-	8,8		
		0-, 0+, 1-	8,8		
(0 - 3)	(0+, 0-, 0-), (0-, 1+, 1-)			(11, 11)	A
(0 - 4)		0+, 0-, 0-	8,8		
	(1+, 0-, 0-), (0-, 1+, 1-)			(3, 3)	В

Ron Donagi (Penn)

Note: These are the four types of groups G_T .

	6-	Ga		$(h^{1,1}, h^{2,1})$	<i>(</i> T -
	G _T	G _S sectors	contribution	$(n \rightarrow , n \rightarrow)$	π_1
Rank 1:		30013	contribution		
(1-1)				(07.2)	С
(1 - 1)	(0+, 0-, 0-), (0-, 0+, 0-)	$egin{array}{l} (au, au, au)\ 0+,0-,0- \end{array}$	8	(27, 3)	C
		0+, 0-, 0- 0-, 0+, 0-	8		
		$0^{-}, 0^{+}, 0^{-}$ $0^{-}, 0^{-}, 0^{+}$	8		
(1 - 2)	$(0+, 0-, 0-), (0-, 0+, \tau-)$	$\frac{0,0,0,0}{(au, au, au)}$	0	(15, 15)	0
(1 2)		(7, 7, 7) 0+, 0-, 0-	4,4	(13, 13)	Ŭ
		$0-, 0+, \tau-$	4,4		
		$\tau -, \tau -, 0 +$	4,4		
(1 - 3)	(0+, 0-, 0-), (0-, 0+, 1-)	(au, au, au)	, ·	(11, 11)	С
		0+, 0-, 0-	4,4		
		0-, 0+, 1-	4,4		
(1 - 4)	(0+, 0-, 0-), (0-, 1+, 1-)	(au, au, au)		(7,7)	Α
		0+, 0-, 0-	4,4		
(1 - 5)	(1+, 0-, 0-), (0-, 1+, 1-)	(au, au, au)		(3, 3)	В
(1-6)	(0+,0-,0-),(0-,0+,0-)	(au, au,0)		(31, 7)	0
		0+, 0-, 0-	8		
		0-, 0+, 0-	8		
		0-, 0-, 0+	8		
		au-, au-,0+	4,4		
(1 - 7)	(0+, 0-, 0-), (0-, 0+, 1-)	(au, au,0)		(11, 11)	С
		0+, 0-, 0-	4,4		
		0-,0+,1-	4,4		
(1 - 8)	(0+, 0-, 0-), (0-, 1+, 0-)	(au, au,0)		(15, 15)	0
		0+, 0-, 0-	4,4		
		0-, 1-, 0+	4,4		
(1 0)		$\tau -, \tau 1 -, 0 +$	4,4		
(1 - 9)	(0+, 0-, 0-), (0-, 1+, 1-)	(au, au,0)		(7,7)	A
(1 10)		0+,0-,0-	4,4	(11 11)	
(1 - 10)	(1+, 0-, 0-), (0-, 1+, 0-)	(au, au, 0)	4 4	(11, 11)	A
		1-, 1-, 0+	4,4		
(1 11)		$\frac{\tau 1-, \tau 1-, 0+}{(-, -, 0)}$	4,4	(2, 2)	D
(1 - 11)	(1+, 0-, 0-), (0-, 1+, 1-)	(au, au,0)		(3, 3)	В

Ron Donagi (Penn)

Heterotic Standard Models

	GT	GS		$(h^{1,1}, h^{2,1})$	π_1
		sectors	contribution		
Rank 2:					
(2 - 1)	(0+, 0-, 0-), (0-, 0+, 0-)	$(1,1,1),(\tau,\tau,\tau)$		(15, 3)	D
		0+, 0-, 0-	4		
		0-, 0+, 0-	4		
		0-, 0-, 0+	4		
(2 - 2)	(0+, 0-, 0-), (0-, 0+, 1-)	$(1,1,1),(\tau,\tau,\tau)$		(9,9)	С
		0+, 0-, 0-	2,2		
		0-, 0+, 1-	2,2		
		1-, 1-, 0+	2,2		
(2 - 3)	(0+, 0-, 0-), (0-, 0+, 0-)	(1,1,1),(au, au,0)		(17, 5)	С
		0+, 0-, 0-	4		
		0-, 0+, 0-	4		
		0-, 0-, 0+	4		
		$\tau-, \tau-, 0+$	2,2		

(2 - 4)	(0+, 0-, 0-), (0-, 0+, 1-)	(1,1,1),(au, au,0)		(11, 11)	0	
		0+, 0-, 0-	2,2	-		
		0-, 0+, 1-	2,2			
		1-, 1-, 0+	2,2			
		au 1-, au 1-, 0+	2,2			
(2 - 5)	(0+,0-,0-),(0-,0+, au-)			(7,7)	D	
		0+, 0-, 0-	2,2			
		$0-, 0+, \tau-$	2,2			
(2 - 6)	(0+, 0-, 0-), (0-, 0+, 0-)			(19, 7)	0	
		0+, 0-, 0-	4			
		0-, 0+, 0-	4			
		0-, 0-, 0+	4			
		au1 $-$, 0 $+$, 1 $-$	2,2			
		au - , 1 - , 0 +	2,2			
(2 - 7)	(0+,0-,0-),(0-,0+, au-)			(9,9)	С	
		0+, 0-, 0-	2,2			
		$0-, 0+, \tau-$	2,2			
		au1-, 0+, $ au$ 1-	2,2			
(2 - 8)	(0+,0-,0-),(0-, au+, au-)			(5, 5)	A	
		0+, 0-, 0-	2,2			
(2 - 9)	(0+, 0-, 0-), (0-, 0+, 0-)			(27, 3)	0	
		0+, 0-, 0-	4			
		0-, 0+, 0-	4			
		0-, 0-, 0+	4			
		0+, 1-, 1-	4			
		1-, 0+, 1-	4			
		1-, 1-, 0+	4			
$\&G_T$	G _S		$(h^{1,1}, h^{2,1})$	π_1		
		sectors	contribution			
(2 - 10)	$(0+, 0-, 0-), (0-, 0+, \tau-)$	(0, 1, 1), (1, 0, 1)		(11, 11)	0	
,		0+,0-,0-	2,2			
		0+, 1-, 1-	2,2			
		$0-, 0+, \tau-$	2,2			
		1-, 0+, au 1-	2, 2			
			,			

Ron Donagi (Penn)

Heterotic Standard Mode

(2-11)	$(0+, 0-, 0-), (0-, \tau+, \tau-)$	(0, 1, 1), (1, 0, 1)		(7,7)	A
		0+, 0-, 0-	2,2		1
		0+, 1-, 1-	2, 2		1
(2 - 12)	(au+,0-,0-),(0-, au+, au-)	(0, 1, 1), (1, 0, 1)		(3, 3)	В
(2 - 13)	(0+, 0-, 0-), (0-, 0+, 0-)	(1,1,0),(au, au,0)		(21, 9)	0
		0+, 0-, 0-	4]
		0-, 0+, 0-	4		
		0-, 0-, 0+	4		
		1-, 1-, 0+ au-, au-, 0+	2, 2		
		$ au^{-}, au^{-}, 0^{+}$ $ au^{1-}, au^{1-}, 0^{+}$	2, 2 2, 2		
(2 - 14)	(0+, 0-, 0-), (0-, 0+, 1-)		_,_	(7,7)	D
		0+,0-,0-	2, 2	(, , ,)	
		0-, 0+, 1-	2,2		
Rank 3:					
(3 - 1)	(0+, 0-, 0-), (0-, 0+, 0-)	$(0, \tau, 1),$		(12, 6)	0
		(0, au, 1), (au, 1, 0)			
		$(0, au,1),(au,1,0) \ 0+,0-,0-$	2		
		$(0, au, 1), (au, 1, 0) \ 0+, 0-, 0- \ 0-, 0+, 0-$	2		
		(0, au, 1), (au, 1, 0) 0+, 0-, 0- 0-, 0+, 0- 0-, 0-, 0+	2 2		
		$(0, au,1),(au,1,0) \ 0+,0-,0- \ 0-,0+,0- \ 0-,0+,0- \ 0-,0+,0+ \ 0+, au-,1-$	$2 \\ 2 \\ 1, 1$		
		(0, au, 1), (au, 1, 0) 0+, 0-, 0- 0-, 0+, 0- 0-, 0-, 0+ 0+, au-, 1- 1-, 0+, au-	$2 \\ 2 \\ 1, 1 \\ 1, 1$		
(2 2)		(0, au, 1), (au, 1, 0) 0+, 0-, 0- 0-, 0+, 0- 0-, 0-, 0+ 0+, au-, 1- 1-, 0+, au- au-, 1-, 0+	$2 \\ 2 \\ 1, 1$		
(3-2)	(0+,0-,0-),(0-,0+,1-)	(0, au, 1), (au, 1, 0) 0+, 0-, 0- 0-, 0+, 0- 0-, 0-, 0+ 0+, au-, 1- 1-, 0+, au- au-, 1-, 0+ au-, 1-, 0+ au-, 1-, 0+	$2 \\ 2 \\ 1, 1 \\ 1, 1$	(12, 6)	0
(3 - 2)	(0+,0-,0-),(0-,0+,1-)	$\begin{array}{c} (0,\tau,1),(\tau,1,0)\\ 0+,0-,0-\\ 0-,0+,0-\\ 0-,0-,0+\\ 0+,\tau-,1-\\ 1-,0+,\tau-\\ \tau-,1-,0+\\ \hline (0,\tau,1),\\ (\tau,1,0),(1,0,\tau) \end{array}$	$2 \\ 2 \\ 1,1 \\ 1,1 \\ 1,1 \\ 1,1$		0
(3 - 2)	(0+,0-,0-),(0-,0+,1-)	$\begin{array}{c} (0,\tau,1),(\tau,1,0)\\ 0+,0-,0-\\ 0-,0+,0-\\ 0-,0-,0+\\ 0+,\tau-,1-\\ 1-,0+,\tau-\\ \tau-,1-,0+\\ \hline (0,\tau,1),\\ (\tau,1,0),(1,0,\tau)\\ 0+,0-,0- \end{array}$	$2 \\ 2 \\ 1,1 \\ 1,$		0
(3 - 2)	(0+,0-,0-),(0-,0+,1-)	$\begin{array}{c} (0,\tau,1),(\tau,1,0)\\ 0+,0-,0-\\ 0-,0+,0-\\ 0-,0-,0+\\ 0+,\tau-,1-\\ 1-,0+,\tau-\\ \tau-,1-,0+\\ \hline (0,\tau,1),\\ (\tau,1,0),(1,0,\tau) \end{array}$	$2 \\ 2 \\ 1, 1 \\ 1, 1 \\ 1, 1 \\ 1, 1 \\ 1, 1 \\ 2$		0
(3 - 2)	(0+, 0-, 0-), (0-, 0+, 1-)	$\begin{array}{c} (0,\tau,1),(\tau,1,0)\\ 0+,0-,0-\\ 0-,0+,0-\\ 0-,0-,0+\\ 0+,\tau-,1-\\ 1-,0+,\tau-\\ \tau-,1-,0+\\ \hline (0,\tau,1),\\ (\tau,1,0),(1,0,\tau)\\ 0+,0-,0-\\ 0-,0+,1-\\ \end{array}$	$2 \\ 2 \\ 1,1 \\ 1,$		0
(3 - 2)	(0+, 0-, 0-), (0-, 0+, 1-)	$\begin{array}{c} (0,\tau,1),(\tau,1,0)\\ 0+,0-,0-\\ 0-,0+,0-\\ 0-,0-,0+\\ 0+,\tau-,1-\\ 1-,0+,\tau-\\ \tau-,1-,0+\\ \hline (0,\tau,1),\\ (\tau,1,0),(1,0,\tau)\\ 0+,0-,0-\\ 0-,0+,1-\\ 0-,\tau-,0+\\ \end{array}$	$2 \\ 2 \\ 1, 1 \\ 1, 1 \\ 1, 1 \\ 1, 1 \\ 1, 1 \\ 2$		0

	G _T	GS		$(h^{1,1}, h^{2,1})$	π_1
		sectors	contribution		
(3 - 3)	(0+, 0-, 0-), (0-, 0+, 0-)	(1, 1, 0),		(17, 5)	0
		(au, au,0),(1, au,1)			
		0+, 0-, 0-	2		
		0-, 0+, 0-	2		
		0-, 0-, 0+	2		
		$0+, \tau 1-, 1-$	2		
		au 1-, 0+, 1-	2		
		1-, 1-, 0+	1, 1		
		au-, au-, 0+	1, 1		
	$(0+, 0-, 0-), (0-, 0+, \tau-)$	au 1-, au 1-, 0+	2		
(3 - 4)	(0+,0-,0-),(0-,0+, au-)	(1, 1, 0),		(7,7)	С
		(au, au,0),(1, au,1)			
		0+, 0-, 0-	1, 1		
		0-, 0+, au-	1, 1		
		$0+, \tau 1-, 1-$	1, 1		
	(0+,0-,0-),(0-,0+,0-)	$\frac{\tau_{1-}, 0+, \tau_{1-}}{\tau_{1-}}$	1, 1		
(3-5)	(0+, 0-, 0-), (0-, 0+, 0-)	(0, 1, 1),		(15, 3)	С
		$(1, 0, 1), (\tau, \tau, \tau)$	2		
		0+, 0-, 0-	2		
		0-, 0+, 0-	2 2		
		0-, 0-, 0+	2		
		$0+, 1-, 1- \\ 1-, 0+, 1-$	2		
			2		
(3 - 6)	$(0+, 0-, 0-), (0-, 0+, \tau-)$	(0, 1, 1)	۷	(9,9)	0
(3 - 0)	(0+, 0-, 0-), (0-, 0+, 7-)	$(0, 1, 1), (1, 0, 1), (\tau, \tau, \tau)$		(9,9)	Ŭ
		(1, 0, 1), (7, 7, 7) 0+, 0-, 0-	1, 1		
		$0^+, 0^-, 0^+, au^-$	1, 1 1, 1		
		$\tau -, \tau -, 0 +$	1, 1 1, 1		
		0+, 1-, 1-	1, 1		
		$1-, 0+, \tau 1-$	1, 1		
		au 1-, au 1-,0+	1, 1		

Ron Donagi (Penn)

Heterotic Standard Models

	G _T	GS		$(h^{1,1}, h^{2,1})$	π_1
		sectors	contribution		
Rank 4:					
(4 - 1)	(0+, 0-, 0-), (0-, 0+, 0-)			(15, 3)	0
		(1,0, au),(1,1,1)			
		0+, 0-, 0-	1	l i	1
		0+, au-, 1-	1		
		0+, 1-, au 1-	1	1	
		$0+, \tau 1-, \tau -$	1		
		0-, 0+, 0-	1		
		$1-, 0+, \tau-$	1		
		au 1-, 0+, 1-	1		
		au -, 0+, $ au$ 1-	1	1	
		0-, 0-, 0+	1	1	
		au - , 1 - , 0 +	1		
		1-, au 1-, 0+	1		
		$\tau 1-, \tau -, 0+$	1		

Important Examples

• (0-1): Vafa-Witten (51,3)

Ron Donagi (Penn) Heterotic Standard Models

Important Examples

- (0-1): Vafa-Witten (51,3)
- (1-1): (27,3) $\pi_1 = \mathbb{Z}/2$ (2-9): (27,3) $\pi_1 = 0$ (2-9) is the NAHE⁺ model= $(\mathbb{Z}/2)^2$ -orbifold of SO(12)-torus (1-1) is not

Important Examples

- (0-1): Vafa-Witten (51,3)
- (1-1): (27,3) $\pi_1 = \mathbb{Z}/2$ (2-9): (27,3) $\pi_1 = 0$ (2-9) is the NAHE⁺ model= $(\mathbb{Z}/2)^2$ -orbifold of SO(12)-torus (1-1) is not
- (0-2): Schoen (19,19)

Ron Donagi (Penn) Heterotic Standard Models

Important Examples

- (0-1): Vafa-Witten (51,3)
- (1-1): (27,3) $\pi_1 = \mathbb{Z}/2$ (2-9): (27,3) $\pi_1 = 0$ (2-9) is the NAHE⁺ model= $(\mathbb{Z}/2)^2$ -orbifold of SO(12)-torus (1-1) is not
- (0-2): Schoen (19,19)
- (1-3): DOPW, BD1 (11,11) \Rightarrow FFMs may produce Het Standard Model!

- (0-1): Vafa-Witten (51,3)
- (1-1): (27,3) $\pi_1 = \mathbb{Z}/2$ (2-9): (27,3) $\pi_1 = 0$ (2-9) is the NAHE⁺ model= $(\mathbb{Z}/2)^2$ -orbifold of SO(12)-torus (1-1) is not
- (0-2): Schoen (19,19)
- (1-3): DOPW, BD1 (11,11) \Rightarrow FFMs may produce Het Standard Model!
- (1-7), (2-5), (2-14): other free $\mathbb{Z}/2$ and $(\mathbb{Z}/2)^2$ Schoen quotients of [BD2].

Ron Donagi (Penn) Heterotic Standard Models

Important Examples

- (0-1): Vafa-Witten (51,3)
- (1-1): (27,3) $\pi_1 = \mathbb{Z}/2$ (2-9): (27,3) $\pi_1 = 0$ (2-9) is the NAHE⁺ model= $(\mathbb{Z}/2)^2$ -orbifold of SO(12)-torus (1-1) is not
- (0-2): Schoen (19,19)
- (1-3): DOPW, BD1 (11,11) \Rightarrow FFMs may produce Het Standard Model!
- (1-7), (2-5), (2-14): other free $\mathbb{Z}/2$ and $(\mathbb{Z}/2)^2$ Schoen quotients of [BD2].
- Seven cases of Borcea-Voisin threefolds

- (0-1): Vafa-Witten (51,3)
- (1-1): (27,3) $\pi_1 = \mathbb{Z}/2$ (2-9): (27,3) $\pi_1 = 0$ (2-9) is the NAHE⁺ model= $(\mathbb{Z}/2)^2$ -orbifold of SO(12)-torus (1-1) is not
- (0-2): Schoen (19,19)
- (1-3): DOPW, BD1 (11,11) \Rightarrow FFMs may produce Het Standard Model!
- (1-7), (2-5), (2-14): other free $\mathbb{Z}/2$ and $(\mathbb{Z}/2)^2$ Schoen quotients of [BD2].
- Seven cases of Borcea-Voisin threefolds

Ron Donagi (Penn) Heterotic Standard Models

Outline Ron Donagi (Penn) Heterotic Standard Models

X=Gross threefold [Gross-Popescu, Gross-Pavanelli]

 $X \to \mathbb{P}^1$ simply-connected, fibered Fibers=abelian surfaces (T^4) with polarization of type (1,8). Dual fibration: $X^{\vee} \to \mathbb{P}^1$ $X^{\vee} \cong X/(\mathbb{Z}/8)^2$, $\pi_1(X^{\vee}) = (\mathbb{Z}/8)^2$. Explicitly: $X \to X' \subset \mathbb{P}^7$, X' intersection of 4 quadrics has 64 nodes. $X \to X'$ small resultion. Advantages:

- Huge $\pi_1 \Rightarrow$ greater phenomenological flexibility
- V on $X^{\vee} \iff$ spectral data on V so don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms
 ⇒ need to check stability

We have: one new example. It seems: many examples.

Construction of spectral curve uses: GW invariants Ron Donagi (Penn) Heterotic Standard Models

World record for $\pi_1(X)$

X =Gross threefold [Gross-Popescu, Gross-Pavanelli] $X \rightarrow \mathbb{P}^1$ simply-connected, fibered

Fibers=abelian surfaces (T^4) with polarization of type (1,8). Dual fibration: $X^{\vee} \to \mathbb{P}^1$

 $X^{\vee} \cong X/(\mathbb{Z}/8)^2$, $\pi_1(X^{\vee}) = (\mathbb{Z}/8)^2$.

Explicitly: $X \to X' \subset \mathbb{P}^7$, X' intersection of 4 quadrics has 64 nodes. $X \to X'$ small resultion.

Advantages:

- Huge $\pi_1 \Rightarrow$ greater phenomenological flexibility
- V on $X^{\vee} \iff$ spectral data on Vso don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms
 ⇒ need to check stability

X = Gross threefold [Gross-Popescu, Gross-Pavanelli]

 $X o \mathbb{P}^1$ simply-connected, fibered

Fibers=abelian surfaces (T^4) with polarization of type (1, 8).

Dual fibration: $X^{\vee} \to \mathbb{P}^1$ $X^{\vee} \cong X/(\mathbb{Z}/8)^2$, $\pi_1(X^{\vee}) = (\mathbb{Z}/8)^2$. Explicitly: $X \to X' \subset \mathbb{P}^7$, X' intersection of 4 quadrics has 64 nodes. $X \to X'$ small resultion. Advantages:

- Huge $\pi_1 \Rightarrow$ greater phenomenological flexibility
- V on $X^{\vee} \iff$ spectral data on V so don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms \Rightarrow need to check stability

We have: one new example. It seems: many examples.

Construction of spectral curve uses: GW invariants Ron Donagi (Penn) Heterotic Standard Models

World record for $\pi_1(X)$

X =Gross threefold [Gross-Popescu, Gross-Pavanelli] $X \to \mathbb{P}^1$ simply-connected, fibered Fibers=abelian surfaces (T^4) with polarization of type (1,8). Dual fibration: $X^{\vee} \to \mathbb{P}^1$

 $X^* \cong X/(\mathbb{Z}/8)^2$, $\pi_1(X^*) = (\mathbb{Z}/8)^2$. Explicitly: $X \to X' \subset \mathbb{P}^7$, X' intersection of 4 quadrics has 64 nodes. $X \to X'$ small resultion. Advantages:

- Huge $\pi_1 \Rightarrow$ greater phenomenological flexibility
- V on $X^{\vee} \iff$ spectral data on V so don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms
 ⇒ need to check stability

X = Gross threefold [Gross-Popescu, Gross-Pavanelli] $X \to \mathbb{P}^1$ simply-connected, fibered Fibers=abelian surfaces (T^4) with polarization of type (1,8). Dual fibration: $X^{\vee} \to \mathbb{P}^1$ $X^{\vee} \cong X/(\mathbb{Z}/8)^2$, $\pi_1(X^{\vee}) = (\mathbb{Z}/8)^2$.

Advantages:

- Huge $\pi_1 \Rightarrow$ greater phenomenological flexibility
- V on X[∨] ⇐⇒ spectral data on V
 so don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms
 ⇒ need to check stability

We have: one new example. It seems: many examples.

Construction of spectral curve uses: GW invariants Ron Donagi (Penn) Heterotic Standard Models

World record for $\pi_1(X)$

 $\begin{array}{l} X = \mbox{Gross-Pavanelli} \\ X \to \mathbb{P}^1 \mbox{ simply-connected, fibered} \\ \mbox{Fibers=abelian surfaces } (T^4) \mbox{ with polarization of type } (1,8). \\ \mbox{Dual fibration: } X^{\vee} \to \mathbb{P}^1 \\ X^{\vee} \cong X/(\mathbb{Z}/8)^2, \ \pi_1(X^{\vee}) = (\mathbb{Z}/8)^2. \\ \mbox{Explicitly: } X \to X' \subset \mathbb{P}^7, \ X' \ \mbox{intersection of 4 quadrics has 64 nodes. } X \to X' \ \mbox{small resultion.} \\ \mbox{Advantages:} \\ \mbox{Huge } \pi_1 \Rightarrow \mbox{greater phenomenological flexibility} \end{array}$

 V on X[∨] ⇐⇒ spectral data on V so don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms \Rightarrow need to check stability

X =Gross threefold [Gross-Popescu, Gross-Pavanelli] $X \to \mathbb{P}^1$ simply-connected, fibered Fibers=abelian surfaces (T^4) with polarization of type (1,8). Dual fibration: $X^{\vee} \to \mathbb{P}^1$ $X^{\vee} \cong X/(\mathbb{Z}/8)^2$, $\pi_1(X^{\vee}) = (\mathbb{Z}/8)^2$. Explicitly: $X \to X' \subset \mathbb{P}^7$, X' intersection of 4 quadrics has 64 nodes. $X \to X'$ small resultion. Advantages:

• V on $X^{\vee} \iff$ spectral data on V so don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms
 ⇒ need to check stability

We have: one new example. It seems: many examples.

 Construction of spectral curve uses
 Owner and spectral curve uses

 Ron Donagi (Penn)
 Heterotic Standard Models

World record for $\pi_1(X)$

X =Gross threefold [Gross-Popescu, Gross-Pavanelli] $X \to \mathbb{P}^1$ simply-connected, fibered Fibers=abelian surfaces (T^4) with polarization of type (1, 8). Dual fibration: $X^{\vee} \to \mathbb{P}^1$ $X^{\vee} \cong X/(\mathbb{Z}/8)^2$, $\pi_1(X^{\vee}) = (\mathbb{Z}/8)^2$. Explicitly: $X \to X' \subset \mathbb{P}^7$, X' intersection of 4 quadrics has 64 nodes. $X \to X'$ small resultion. Advantages:

- Huge $\pi_1 \Rightarrow$ greater phenomenological flexibility
- \circ V on $X^ee \iff$ spectral data on V
 - so don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms \Rightarrow need to check stability

 $\begin{array}{l} X = \mbox{Gross-Pavanelli}] \\ X \to \mathbb{P}^1 \mbox{ simply-connected, fibered} \\ \mbox{Fibers=abelian surfaces } (T^4) \mbox{ with polarization of type } (1,8). \\ \mbox{Dual fibration: } X^\vee \to \mathbb{P}^1 \\ X^\vee \cong X/(\mathbb{Z}/8)^2, \ \pi_1(X^\vee) = (\mathbb{Z}/8)^2. \\ \mbox{Explicitly: } X \to X' \subset \mathbb{P}^7, \ X' \ \mbox{intersection of 4 quadrics has 64} \\ \mbox{nodes. } X \to X' \ \mbox{small resultion.} \\ \mbox{Advantages:} \\ & \mbox{Huge } \pi_1 \Rightarrow \mbox{greater phenomenological flexibility} \end{array}$

• V on $X^{\vee} \iff$ spectral data on Vso don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms
 ⇒ need to check stability

We have: one new example. It seems: many examples.

Ron Donagi (Penn) Heterotic Standard Models

World record for $\pi_1(X)$

 $\begin{array}{l} X = \mbox{Gross-Pavanelli}] \\ X \to \mathbb{P}^1 \mbox{ simply-connected, fibered} \\ \mbox{Fibers=abelian surfaces } (T^4) \mbox{ with polarization of type } (1,8). \\ \mbox{Dual fibration: } X^{\vee} \to \mathbb{P}^1 \\ X^{\vee} \cong X/(\mathbb{Z}/8)^2, \ \pi_1(X^{\vee}) = (\mathbb{Z}/8)^2. \\ \mbox{Explicitly: } X \to X' \subset \mathbb{P}^7, \ X' \ \mbox{intersection of 4 quadrics has 64} \\ \mbox{nodes. } X \to X' \ \mbox{small resultion.} \\ \mbox{Advantages:} \\ \mbox{ Huge } \pi_1 \Rightarrow \mbox{ greater phenomenological flexibility} \end{array}$

• V on $X^{\vee} \iff$ spectral data on V so don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms \Rightarrow need to check stability

X =Gross threefold [Gross-Popescu, Gross-Pavanelli] $X \to \mathbb{P}^1$ simply-connected, fibered Fibers=abelian surfaces (T^4) with polarization of type (1,8). Dual fibration: $X^{\vee} \rightarrow \mathbb{P}^1$ $X^{ee}\cong X/(\mathbb{Z}/8)^2$, $\pi_1(X^{ee})=(\mathbb{Z}/8)^2$. Explicitly: $X \to X' \subset \mathbb{P}^7$, X' intersection of 4 quadrics has 64 nodes. $X \rightarrow X'$ small resultion. Advantages:

- Huge $\pi_1 \Rightarrow$ greater phenomenological flexibility
- V on $X^{\vee} \iff$ spectral data on Vso don't need invariance

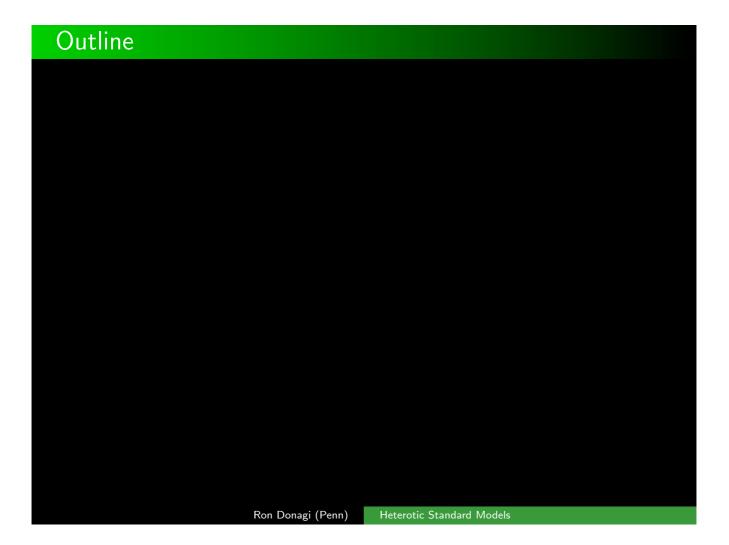
Difficulties:

- Hard to find spectral curves (codim 2)

We have: one new example. It seems: many examples. Construction of spectral curve uses: GW invariants! Ron Donagi (Penn)

World record for $\pi_1(X)$

X =Gross threefold [Gross-Popescu, Gross-Pavanelli] $X \to \mathbb{P}^1$ simply-connected, fibered Fibers=abelian surfaces (T^4) with polarization of type (1,8). Dual fibration: $X^{\vee} \to \mathbb{P}^1$ $X^{ee}\cong X/(\mathbb{Z}/8)^2$, $\pi_1(X^{ee})=(\mathbb{Z}/8)^2$. Explicitly: $X \to X' \subset \mathbb{P}^7$, X' intersection of 4 guadrics has 64 nodes. $X \rightarrow X'$ small resultion. Advantages:


- Huge $\pi_1 \Rightarrow$ greater phenomenological flexibility
- V on $X^{\vee} \iff$ spectral data on V
 - so don't need invariance

Difficulties:

- Hard to find spectral curves (codim 2)
- Spectral construction needs to combine with Hecke transforms \Rightarrow need to check stability

We have: one new example. It seems: many examples.

Construction of spectral curve uses: GW invariants Ron Donagi (Penn) Heterotic Standard Models

Summary

- Within the "E₈ × E₈ heterotic on smooth threefolds" corner of the landscape, the High Country region is very small (only one model so far! :-)
- Perhaps other models in the class of threefolds constructed as quotients of Schoen's threefolds, but not on the \mathbb{Z}_6 one, at least with current bundle construction methods
- Hope to get more physical models on Gross' threefold (more to come soon :-)
- Allowing SUSY breaking at the compactification scale leads to infinite families of models, probably not phenomenologically viable

Summary

- Within the "E₈ × E₈ heterotic on smooth threefolds" corner of the landscape, the High Country region is very small (only one model so far! :-)
- Perhaps other models in the class of threefolds constructed as quotients of Schoen's threefolds, but not on the \mathbb{Z}_6 one, at least with current bundle construction methods
- Hope to get more physical models on Gross' threefold (more to come soon :-)
- Allowing SUSY breaking at the compactification scale leads to infinite families of models, probably not phenomenologically viable

Ron Donagi (Penn)

Heterotic Standard Mod

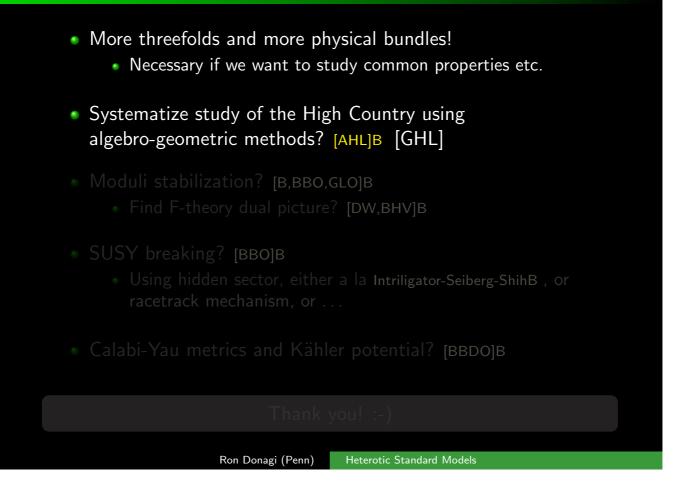
Summary

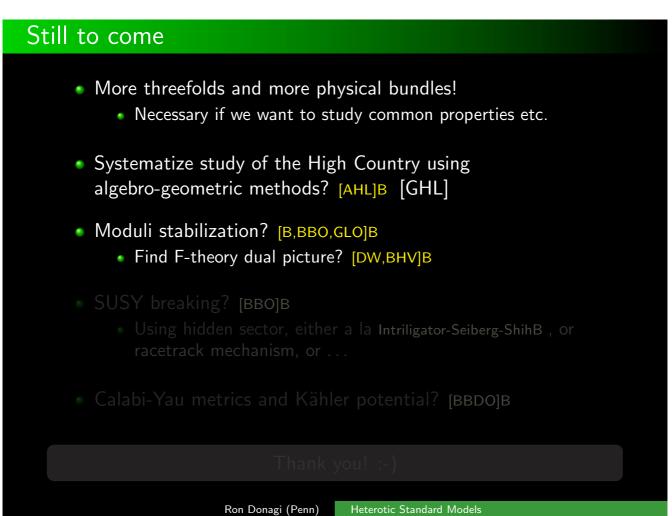
- Within the "E₈ × E₈ heterotic on smooth threefolds" corner of the landscape, the High Country region is very small (only one model so far! :-)
- Perhaps other models in the class of threefolds constructed as quotients of Schoen's threefolds, but not on the \mathbb{Z}_6 one, at least with current bundle construction methods
- Hope to get more physical models on Gross' threefold (more to come soon :-)
- Allowing SUSY breaking at the compactification scale leads to infinite families of models, probably not phenomenologically viable

Summary

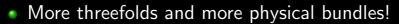
- Within the " $E_8 \times E_8$ heterotic on smooth threefolds" corner of the landscape, the High Country region is very small (only one model so far! :-)
- Perhaps other models in the class of threefolds constructed as quotients of Schoen's threefolds, but not on the \mathbb{Z}_6 one, at least with current bundle construction methods
- Hope to get more physical models on Gross' threefold (more to come soon :-)
- Allowing SUSY breaking at the compactification scale leads to infinite families of models, probably not phenomenologically viable

Ron Donagi (Penn) Heterotic Standard Models

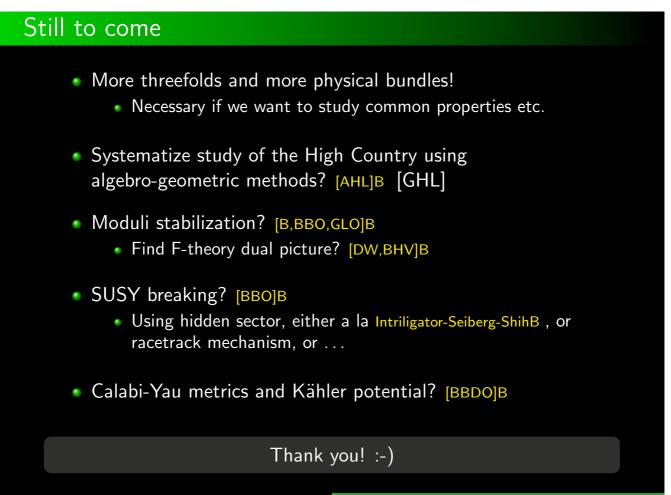

Still to come


- More threefolds and more physical bundles!
 - Necessary if we want to study common properties etc.

- Calabi-Yau metrics and Kähler potential? [BBDO]B



Still to come



Still to come

- Necessary if we want to study common properties etc.
- Systematize study of the High Country using algebro-geometric methods? [AHL]B [GHL]
- Moduli stabilization? [B,BBO,GLO]B
 - Find F-theory dual picture? [DW,BHV]B
- SUSY breaking? [BBO]B
 - Using hidden sector, either a la Intriligator-Seiberg-ShihB, or racetrack mechanism, or ...

Ron Donagi (Penn) Heterotic Standard Models

