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Heterotic Standard Models
The High Country region of the string landscape

Goal: Study string vacua which reproduce the MSSM (or
close cousins thereof) at low energies

String landscape is huge, but High Country region may be
much smaller

Questions:
How many such vacua?
Do they have common properties (predictions)?
Constraints coming from string UV completion?

Crucial: Must require global consistency of the string vacuum

A particular corner of the string landscape:

E8 × E8 heterotic string on R3,1 × X with gauge instanton V ,
where X is a smooth compact Calabi-Yau threefold
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SUSY heterotic vacua

Data:
X : smooth compact Calabi-Yau threefold
V → X : hol. vector bundle with structure group G ⊂ E8

Consistency constraints:

V is polystable w.r.t a Kähler class [DUY: connection soln to HYM]B

c2(X )− c2(V ) = [M5] [anomaly cancellation with M5-branes]B

Phenomenological requirements:

Commutant H of G in E8 is low-energy GUT group

π1(X ) = F to break H to MSSM gauge group with discrete
Wilson line

Various extra phenomenological constraints:
c1(V ) = 0 [G = SU(n)]B

c3(V ) = ±6 [3 generations]B

H1(V ),H2(V ),H1(∧2V ),H2(∧2V ), . . . [Particle spectrum]B

Triple products of cohomology groups, . . . [Tri-linear couplings]B
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Summary and examples

Heterotic vacuum:

1 Non-simply connected Calabi-Yau threefold X

2 Polystable bundle V → X satisfying a lot of constraints

Examples:

π1(X ) = Z2, G = SU(5)
SU(5) GUT

SU(5)
Z2−→ SU(3)× SU(2)× U(1)

π1(X ) = Z6 or (Z3)2, G = SU(4)

SO(10) GUT

SO(10)
Z6 or (Z3)

2

−→ SU(3)× SU(2)× U(1)× U(1)
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1st step: Constructing non-simply connected CY 3-folds X

Consider a smooth simply connected Calabi-Yau threefold X̃
admitting a group F of automorphisms acting freely on X̃

→ X = X̃/F is a smooth Calabi-Yau threefold with π1(X ) = F

X̃ is a smooth fiber product of two rational elliptic surfaces
[Schoen]B

We classified all possible finite groups F acting freely on X̃
[BD2]B

X̃ is the small resolution of a particular complete intersection
of four quadrics in P7 [Gross]B

free (Z8)2 action [Gross]B

2 non-Abelian groups of order 64 act freely [Borisov-Hua]B

Hypersurfaces/complete intersections in toric threefolds, . . .
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Free quotients of Schoen’s threefolds

Let B and B ′ be RES, and X̃ = B ×P1 B ′ a smooth fiber product:

X̃
π′

!!!!
!!

!!
!! π

"""
""

""
""

"

B
β

###
##

##
##

B ′

β′

$$$$
$$

$$
$

P1

Idea: Consider special B and B ′ s.t. X̃ admits a free group of
automorphisms FX̃ .
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Free quotients of Schoen’s threefolds

Automorphisms τX̃ : X̃ → X̃ have the form τX̃ = τB ×P1 τB′

Classification of (X̃ ,FX̃ ) reduces to classification of (B,FB),
for suitable groups of automorphisms FB

We produced such a classification, and we obtained a large class of
X̃ with FX̃ one of the following: [BD2]B

(Z3)
2, Z4 × Z2, Z6, Z5,

Z4, (Z2)
2, Z3, Z2
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2nd step: Constructing stable vector bundles V → X

Fourier-Mukai transform [FMW, D]B

Use dual Fourier-Mukai data to construct the bundle
Needs X to be fibered (usually torus-fibered, but can be
generalized)
Pros: Easy to prove stability from FM data [FMW]B

Cons: If start with Ṽ → X̃ , invariance under FX̃ hard to prove

Serre construction by extension

0→ V1 → V → V2 → 0

Pros: If start with Ṽ → X̃ , invariance easy to prove
Cons: Stability is hard to prove

To satisfy phenomenological constraints, may need
combination of both methods [DOPW]B

Other methods: monads [AHL]B , Hecke transforms, . . .
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Best (and only) model so far [BD1, BCD]B

The manifold: X̃ = B ×P1 B ′, with special B and B ′ such that
FX̃ & Z2 acts freely on X̃

The bundle: SU(5), Z2-invariant, stable bundle Ṽ → X̃
constructed by

0→ V3 → Ṽ → V2 → 0,

where V3 and V2 are rank 3 and 2 bundles on X̃ constructed
using Fourier-Mukai transform

Anomaly is cancelled, either with M5-branes, or without
M5-branes but with a non-trivial hidden bundle
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Phenomenology of this model

MSSM gauge group SU(3)× SU(2)× U(1) with no extra
U(1)’s

Precisely the MSSM massless spectrum with no exotic
particles, up to moduli fields

Semi-realistic tri-linear couplings at tree level

R-parity is conserved at tree level (proton is stable)

Higgs µ-terms and (possible) neutrino mass terms

To be addressed

SUSY breaking? (hidden sector)

Moduli stabilization?

Higher order corrections?

More phenomenology needed
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Other models

Buchmuller, Hamaguchi, Lebedev, Ratz (and many others)
Z/6-orbifolds

Braun, He, Ovrut, Pantev
π1(X ) = Z/3× Z/3, V unstable

Faraggi, NAHE: Free Fermionic models
(Z/2)n orbifolds “non-geometric”

D, Faraggi: not within a particular class of geometric orbifolds

DW: not a geometric orbifold
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Constructing other realistic models

Using methods similar to [BD1], we tried to construct realistic
bundles on fiber product X̃ with FX̃ & Z6
→ No realistic bundle [BD3]B

Main insight: strong tension between inequalities coming from
anomaly cancellation and stability

Work in progress: physical bundles on Gross’ threefold with
π1(X ) = (Z8)2 [BBDG]B

We constructed bundles phenomenologically viable at the
topological level (up to a few subtleties that remain to be
checked), using Fourier-Mukai transform on Abelian surface
fibrations, and Hecke transforms
Next step: cohomology computation
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Relaxing the constraints (. . . )

Recall: strong tension between anomaly cancellation and stability

In principle, one can “forget” about anomaly cancellation
non-SUSY vacua with M5- and anti-M5-branes [B,BBO]B

SUSY broken at the compactification scale :-(

We get infinite families of such non-SUSY vacua with exactly
the phenomenological properties above [BD3]B

Also get infinite families of models on X̃ with π1(X̃ ) = Z6

One such model on X̃ with π1(X̃ ) = (Z3)2 [BHOP]B , perhaps
more

Such infinite familes considered by Acharya-DouglasB in
landscape study
→ phenomenological cutoff on scale of SUSY breaking
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of orbifolds T 6/G

T 6 = E1 × E2 × E3

0→ GS → G → G 0
T → 0 where GS is shifts and G 0

T twists.
G 0

T = Z/2× Z/2 acts (x , y , z) '→ (±x ,±y ,±z) with even number
of sign changes
After some reduction: ∃GT ⊂ G , GT

∼→ G 0
T

Four inequivalent types of GT .
Use reduction procedure to classify. For each model we calculate:

Hodge Numbers (via orbifold cohomology)

Fundamental groups (Wilson lines)

Some geometry

Effect of discrete torsion, no new Hodge numbers, except
mirror-symmetry like interchange H1,1 ⇐⇒ H2,1. (Compare:
Mirage torsion: Ploger, Ramos-Sanchez, Ratz, Vaudrevange.)
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We list the automorphism groups by rank. For each group G we
list its twist group GT , its shift part GS (if non-empty), the Hodge
numbers h1,1, h2,1 of a small resolution of X/G , the fundamental
group π1(X/G ), and the list of contributing sectors and their
contribution. For the fundamental groups we use the abbreviations:

A : the extension of Z2 by Z2 (so H1(X ) = (Z2)
3)

B : any extension of (Z2)
2 by Z6 (with various possible H1(X ))

C : Z2

D : (Z2)
2

A shift element is denoted by a triple (ε1, ε2, ε3), where εi ∈ Ei is a
point of order 2, abbreviated as one of 0, 1, τ, τ1 := 1 + τ . A twist
element is denoted by a triple (ε1δ1, ε2δ2, ε3δ3), where εi ∈ Ei is as
above and δi ∈ {±} indicates the pure twist part. A two-entry
contribution (a, b) adds a units to h1,1 and b units to h2,1. When
b = 0 we abbreviate (a, b) to the single entry contribution a.
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GT (h1,1, h2,1) π1
sectors contribution

Rank 0:
(0 − 1) (0+, 0−, 0−), (0−, 0+, 0−) (51, 3) 0

0+, 0−, 0− 16
0−, 0+, 0− 16
0−, 0−, 0+ 16

(0 − 2) (0+, 0−, 0−), (0−, 0+, 1−) (19, 19) 0
0+, 0−, 0− 8, 8
0−, 0+, 1− 8, 8

(0 − 3) (0+, 0−, 0−), (0−, 1+, 1−) (11, 11) A
0+, 0−, 0− 8, 8

(0 − 4) (1+, 0−, 0−), (0−, 1+, 1−) (3, 3) B

Note: These are the four types of groups GT .
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GT GS (h1,1, h2,1) π1
sectors contribution

Rank 1:
(1 − 1) (0+, 0−, 0−), (0−, 0+, 0−) (τ, τ, τ) (27, 3) C

0+, 0−, 0− 8
0−, 0+, 0− 8
0−, 0−, 0+ 8

(1 − 2) (0+, 0−, 0−), (0−, 0+, τ−) (τ, τ, τ) (15, 15) 0
0+, 0−, 0− 4, 4
0−, 0+, τ− 4, 4
τ−, τ−, 0+ 4, 4

(1 − 3) (0+, 0−, 0−), (0−, 0+, 1−) (τ, τ, τ) (11, 11) C
0+, 0−, 0− 4, 4
0−, 0+, 1− 4, 4

(1 − 4) (0+, 0−, 0−), (0−, 1+, 1−) (τ, τ, τ) (7, 7) A
0+, 0−, 0− 4, 4

(1 − 5) (1+, 0−, 0−), (0−, 1+, 1−) (τ, τ, τ) (3, 3) B
(1 − 6) (0+, 0−, 0−), (0−, 0+, 0−) (τ, τ, 0) (31, 7) 0

0+, 0−, 0− 8
0−, 0+, 0− 8
0−, 0−, 0+ 8
τ−, τ−, 0+ 4, 4

(1 − 7) (0+, 0−, 0−), (0−, 0+, 1−) (τ, τ, 0) (11, 11) C
0+, 0−, 0− 4, 4
0−, 0+, 1− 4, 4

(1 − 8) (0+, 0−, 0−), (0−, 1+, 0−) (τ, τ, 0) (15, 15) 0
0+, 0−, 0− 4, 4
0−, 1−, 0+ 4, 4
τ−, τ1−, 0+ 4, 4

(1 − 9) (0+, 0−, 0−), (0−, 1+, 1−) (τ, τ, 0) (7, 7) A
0+, 0−, 0− 4, 4

(1 − 10) (1+, 0−, 0−), (0−, 1+, 0−) (τ, τ, 0) (11, 11) A
1−, 1−, 0+ 4, 4
τ1−, τ1−, 0+ 4, 4

(1 − 11) (1+, 0−, 0−), (0−, 1+, 1−) (τ, τ, 0) (3, 3) B
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GT GS (h1,1, h2,1) π1
sectors contribution

Rank 2:
(2 − 1) (0+, 0−, 0−), (0−, 0+, 0−) (1, 1, 1), (τ, τ, τ) (15, 3) D

0+, 0−, 0− 4
0−, 0+, 0− 4
0−, 0−, 0+ 4

(2 − 2) (0+, 0−, 0−), (0−, 0+, 1−) (1, 1, 1), (τ, τ, τ) (9, 9) C
0+, 0−, 0− 2, 2
0−, 0+, 1− 2, 2
1−, 1−, 0+ 2, 2

(2 − 3) (0+, 0−, 0−), (0−, 0+, 0−) (1, 1, 1), (τ, τ, 0) (17, 5) C
0+, 0−, 0− 4
0−, 0+, 0− 4
0−, 0−, 0+ 4
τ−, τ−, 0+ 2, 2
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(2 − 4) (0+, 0−, 0−), (0−, 0+, 1−) (1, 1, 1), (τ, τ, 0) (11, 11) 0
0+, 0−, 0− 2, 2
0−, 0+, 1− 2, 2
1−, 1−, 0+ 2, 2
τ1−, τ1−, 0+ 2, 2

(2 − 5) (0+, 0−, 0−), (0−, 0+, τ−) (1, 1, 1), (τ, τ, 0) (7, 7) D
0+, 0−, 0− 2, 2
0−, 0+, τ− 2, 2

(2 − 6) (0+, 0−, 0−), (0−, 0+, 0−) (1, 1, 1), (τ, 1, 0) (19, 7) 0
0+, 0−, 0− 4
0−, 0+, 0− 4
0−, 0−, 0+ 4
τ1−, 0+, 1− 2, 2
τ−, 1−, 0+ 2, 2

(2 − 7) (0+, 0−, 0−), (0−, 0+, τ−) (1, 1, 1), (τ, 1, 0) (9, 9) C
0+, 0−, 0− 2, 2
0−, 0+, τ− 2, 2
τ1−, 0+, τ1− 2, 2

(2 − 8) (0+, 0−, 0−), (0−, τ+, τ−) (1, 1, 1), (τ, 1, 0) (5, 5) A
0+, 0−, 0− 2, 2

(2 − 9) (0+, 0−, 0−), (0−, 0+, 0−) (0, 1, 1), (1, 0, 1) (27, 3) 0
0+, 0−, 0− 4
0−, 0+, 0− 4
0−, 0−, 0+ 4
0+, 1−, 1− 4
1−, 0+, 1− 4
1−, 1−, 0+ 4

&GT GS (h1,1, h2,1) π1
sectors contribution

(2 − 10) (0+, 0−, 0−), (0−, 0+, τ−) (0, 1, 1), (1, 0, 1) (11, 11) 0
0+, 0−, 0− 2, 2
0+, 1−, 1− 2, 2
0−, 0+, τ− 2, 2
1−, 0+, τ1− 2, 2
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(2 − 11) (0+, 0−, 0−), (0−, τ+, τ−) (0, 1, 1), (1, 0, 1) (7, 7) A
0+, 0−, 0− 2, 2
0+, 1−, 1− 2, 2

(2 − 12) (τ+, 0−, 0−), (0−, τ+, τ−) (0, 1, 1), (1, 0, 1) (3, 3) B
(2 − 13) (0+, 0−, 0−), (0−, 0+, 0−) (1, 1, 0), (τ, τ, 0) (21, 9) 0

0+, 0−, 0− 4
0−, 0+, 0− 4
0−, 0−, 0+ 4
1−, 1−, 0+ 2, 2
τ−, τ−, 0+ 2, 2
τ1−, τ1−, 0+ 2, 2

(2 − 14) (0+, 0−, 0−), (0−, 0+, 1−) (1, 1, 0), (τ, τ, 0) (7, 7) D
0+, 0−, 0− 2, 2
0−, 0+, 1− 2, 2

Rank 3:
(3 − 1) (0+, 0−, 0−), (0−, 0+, 0−) (0, τ, 1), (12, 6) 0

(0, τ, 1), (τ, 1, 0)
0+, 0−, 0− 2
0−, 0+, 0− 2
0−, 0−, 0+ 2
0+, τ−, 1− 1, 1
1−, 0+, τ− 1, 1
τ−, 1−, 0+ 1, 1

(3 − 2) (0+, 0−, 0−), (0−, 0+, 1−) (0, τ, 1), (12, 6) 0
(τ, 1, 0), (1, 0, τ)
0+, 0−, 0− 1, 1
0−, 0+, 1− 2
0−, τ−, 0+ 2
0+, τ−, 1− 2
1−, 0+, τ1− 1, 1
τ−, τ1−, 0+ 1, 1
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GT GS (h1,1, h2,1) π1
sectors contribution

(3 − 3) (0+, 0−, 0−), (0−, 0+, 0−) (1, 1, 0), (17, 5) 0
(τ, τ, 0), (1, τ, 1)
0+, 0−, 0− 2
0−, 0+, 0− 2
0−, 0−, 0+ 2
0+, τ1−, 1− 2
τ1−, 0+, 1− 2
1−, 1−, 0+ 1, 1
τ−, τ−, 0+ 1, 1
τ1−, τ1−, 0+ 2

(3 − 4) (0+, 0−, 0−), (0−, 0+, τ−) (1, 1, 0), (7, 7) C
(τ, τ, 0), (1, τ, 1)
0+, 0−, 0− 1, 1
0−, 0+, τ− 1, 1
0+, τ1−, 1− 1, 1
τ1−, 0+, τ1− 1, 1

(3 − 5) (0+, 0−, 0−), (0−, 0+, 0−) (0, 1, 1), (15, 3) C
(1, 0, 1), (τ, τ, τ)
0+, 0−, 0− 2
0−, 0+, 0− 2
0−, 0−, 0+ 2
0+, 1−, 1− 2
1−, 0+, 1− 2
1−, 1−, 0+ 2

(3 − 6) (0+, 0−, 0−), (0−, 0+, τ−) (0, 1, 1), (9, 9) 0
(1, 0, 1), (τ, τ, τ)
0+, 0−, 0− 1, 1
0−, 0+, τ− 1, 1
τ−, τ−, 0+ 1, 1
0+, 1−, 1− 1, 1
1−, 0+, τ1− 1, 1
τ1−, τ1−, 0+ 1, 1
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GT GS (h1,1, h2,1) π1
sectors contribution

Rank 4:
(4 − 1) (0+, 0−, 0−), (0−, 0+, 0−) (0, τ, 1), (τ, 1, 0), (15, 3) 0

(1, 0, τ), (1, 1, 1)
0+, 0−, 0− 1
0+, τ−, 1− 1
0+, 1−, τ1− 1
0+, τ1−, τ− 1
0−, 0+, 0− 1
1−, 0+, τ− 1
τ1−, 0+, 1− 1
τ−, 0+, τ1− 1
0−, 0−, 0+ 1
τ−, 1−, 0+ 1
1−, τ1−, 0+ 1
τ1−, τ−, 0+ 1
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Important Examples

(0-1): Vafa-Witten (51,3)

(1-1): (27,3) π1 = Z/2
(2-9): (27,3) π1 = 0
(2-9) is the NAHE+ model=(Z/2)2-orbifold of SO(12)-torus
(1-1) is not

(0-2): Schoen (19,19)

(1-3): DOPW, BD1 (11,11)
⇒FFMs may produce Het Standard Model!

(1-7), (2-5), (2-14): other free Z/2 and (Z/2)2 Schoen
quotients of [BD2].

Seven cases of Borcea-Voisin threefolds
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World record for π1(X )

X=Gross threefold [Gross-Popescu, Gross-Pavanelli]
X → P1 simply-connected, fibered
Fibers=abelian surfaces (T 4) with polarization of type (1, 8).
Dual fibration: X∨ → P1

X∨ ∼= X/(Z/8)2, π1(X∨) = (Z/8)2.
Explicitly: X → X ′ ⊂ P7, X ′ intersection of 4 quadrics has 64
nodes. X → X ′ small resultion.
Advantages:

Huge π1 ⇒ greater phenomenological flexibility
V on X∨ ⇐⇒ spectral data on V
so don’t need invariance

Difficulties:

Hard to find spectral curves (codim 2)
Spectral construction needs to combine with Hecke transforms
⇒ need to check stability

We have: one new example. It seems: many examples.
Construction of spectral curve uses: GW invariants!
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Summary

Within the “E8 × E8 heterotic on smooth threefolds” corner of
the landscape, the High Country region is very small (only one
model so far! :-)

Perhaps other models in the class of threefolds constructed as
quotients of Schoen’s threefolds, but not on the Z6 one, at
least with current bundle construction methods

Hope to get more physical models on Gross’ threefold (more
to come soon :-)

Allowing SUSY breaking at the compactification scale leads to
infinite families of models, probably not phenomenologically
viable
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Still to come

More threefolds and more physical bundles!
Necessary if we want to study common properties etc.

Systematize study of the High Country using
algebro-geometric methods? [AHL]B [GHL]

Moduli stabilization? [B,BBO,GLO]B

Find F-theory dual picture? [DW,BHV]B

SUSY breaking? [BBO]B

Using hidden sector, either a la Intriligator-Seiberg-ShihB , or
racetrack mechanism, or . . .

Calabi-Yau metrics and Kähler potential? [BBDO]B

Thank you! :-)
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