A new infinite class of AdS flux vacua

Alessandro Tomasiello

Introduction

This talk is about supersymmetric AdS vacua.

- We don’t live in AdS$_4$; nor is supersymmetry unbroken

But: Useful first step. Several ideas to then ‘lift’ to dS$_4$ eg [KKLT’03]

(⟺ susy breaking)

- ‘Generalized complex geometry’ suggested rich structure of vacua beyond Calabi-Yau’s

[Graña,Minasian,Petrini,AT’05,’06]
● In this talk, we will start vindicating that expectation:

IIA vacua in $\text{AdS}_4 \times \mathbb{CP}^3$ [AT’07]

a rich ‘discretuum’
of vacua
with same topology

$N = 1$

old solution;
$N = 6$

● Recently: CFT3 duals with lagrangian description [Aharony,Bergman,Jafferis,Maldacena ’08…]

can we now proceed to lower supersymmetry?

yes: we will see $N = 3$ quivers [Jafferis,AT’08] using ‘hypertoric geometry’

Plan

● Overview of AdS_4 vacua

the role of the ‘Romans mass’

● Old solutions in new perspective

the recurrence of \mathbb{CP}^3

● New solutions

and conjectures
Overview of AdS4 vacua (in IIA)

Internal manifold: ‘generalized half-flat’

[for Minkowski vacua: ‘generalized complex’]

All known* vacua belong to ‘SU(3) structure’ class

\[\text{in which case, geometry:} \]

\[dJ \propto \text{Re} \Omega \]
\[\Delta \text{Re} \Omega \propto \text{Re} \Omega \]
\[J \wedge \Omega = 0 \]
\[\Omega \wedge \overline{\Omega} = iJ^3 \]

*‘nontrivial’

The master of all fluxes is \(F_0 \) (“Romans mass”) many more vacua!

\[
\begin{array}{|c|c|}
\hline
F_0 = 0 & F_0 \neq 0 \\
\hline
\mathcal{N} > 1 \text{ possible} & \mathcal{N} > 1 \text{ impossible} \\
\hline
\text{dilaton can vary} & \text{dilaton is constant} \\
\hline
\exists \text{ M-theory lift} & \nexists \text{ M-theory lift} \\
\hline
\text{near-horizon limits} & \text{not so far} \\
\hline
\end{array}
\]

[for ‘SU(3) structure’ class]
We can say more by introducing \(\sin(\theta) \sim \frac{F_0}{\sqrt{-\Lambda}} \), where cosmological constant \(\Lambda \) is.

\[F_0, F_4, H \propto \sin(\theta) \]

\[F_2, F_6 \propto \cos(\theta) \]

\(F_k \) are internal fluxes; \(k \) are internal fluxes.

\[\theta \] are internal fluxes.

\[\text{this limit can be violated with magnetic sources; eg } [\text{deWolfe, Giryavets, Kachru, Taylor '05}] \]

Old solutions in new perspective

- \(\theta = 0 \)
 - \(F_0 = 0 \)
 - \(F_2 \neq 0 \)

Example:

\[\text{AdS}_4 \times S^7 \quad (N = 8) \]

\[\text{AdS}_4 \times \mathbb{CP}^3 \quad (N = 6) \]

\[[\text{Nilsson, Pope '84}; \text{Watamura '84}; \text{Sorokin, Tkach, Volkov '85}] \]

Fubini-Study

Kähler; but didn’t we say \(dJ \propto \text{Re}\Omega \)?

Different (almost) complex structures
many more examples of the same type:

[be careful not to lose susy when reducing to IIA]

$\mathcal{N} = 3$	hyperKähler	$\text{SU}(3)/U(1) \left\{ \frac{U(1)}{U(1)} \right\}$ (S(Ω))
$\mathcal{N} = 2$	Calabi-Yau	$\left(\frac{\text{SU}(2)}{U(1)} \right)^3$; “YP, k”
$\mathcal{N} = 1$	Spin(7) hol.	squashed S^7 ; $\text{SU}(3)/U(1)$

Chern-Simons-matter duals: [Jafferis, AT’08]

quivers

other dualities proposed in
[Ahn ’08, Benna, Klebanov, Klose, Smedbäck ’08, Ooguri, Park ’08…]

$\sin(\theta) = \frac{1}{4}$

‘extremal case’ [Behrndt, Cvetic’04]

all fluxes are on!

coincidence*: condition on M_6 is

\((\text{nearly Kähler}) \)

\(\text{Cone}(M_6) \)

has G_2 holonomy

*not explained by a brane near-horizon limit

four cases known explicitly*:

$\text{AdS}_4 \times$:

- \mathbb{CP}^3
 - not Fubini-Study!
 - but still Einstein
- $\text{SU}(3)/U(1) \times U(1)$
- $S^3 \times S^3$
- S^6

we saw these two topologies already for $\theta = 0$

...but with different metrics

*with isolated singularity
New vacua

We have seen three vacua on $\text{AdS}_4 \times \mathbb{CP}^3$

These are three different metrics.

\mathbb{CP}^3 is a sphere fibration:

\[ds^2 = R^2 (g_{ij} (dx^i + A^i) (dx^j + A^j) + \sigma dS^2_{S^4}) \]

those three metrics on \mathbb{CP}^3 are:

- the whole segment allows supergravity solutions
- flux quantization 'fixes moduli'

\[F_0 = 0 \]
- from $\text{AdS}_4 \times S^7$
- using that $\text{Cone}(\mathbb{CP}^3)$ has G_2 holonomy

\[F_0 \neq 0 \]
- from $\text{AdS}_4 \times \{\text{sq. } S^7\}$

\[\sigma \]

\[\text{Fubini-Study} \]

[AT’07]
for each of these σ, can achieve $R \gg l_s$ and $g_s \ll 1$ parametrically

generically all fluxes are on.
Are these results limited to \mathbb{CP}^3?

for ‘flag manifold’ $\frac{\text{SU}(3)}{\text{U}(1)^2}$

[AT’07; Koerber, Lüst, Tsimpis ‘08]

Brane duals to these geometries make one suspect of a more general story.

(Also discretized by flux quantization)

Conclusions

Even in a simple topology, infinitely many supersymmetric vacua

- Infinitely many new Chern-Simons duals ($\mathcal{N} = 3$)