Lagrangians for Multiple M2's

Neil Lambert
King's College London

Strings, CERN, 19 August 2008
with J. Bagger, hep-th/0611108, 0711.0955, 0712.3738, 0807.0163

$$
\text { and D. Tong } 0804.1114
$$

Introduction

M-Branes are mysterious objects

Introduction

M-Branes are mysterious objects
In the case of a single M-brane the full supersymmetric dynamics are known and have powerful, seemingly magical properties

- M2 - [Bergshoeff, Townsend, Sezgin] (1987)
- M5 - [Howe, Sezgin, West], [Schwarz, Perry] (1996)

M-Branes are mysterious objects
In the case of a single M -brane the full supersymmetric dynamics are known and have powerful, seemingly magical properties

- M2 - [Bergshoeff, Townsend, Sezgin] (1987)
- M5 - [Howe, Sezgin, West], [Schwarz, Perry] (1996)

But the dynamics of multiple M-branes has proved to be elusive

- No dilaton to enable a weakly coupled limit
- M2- $n^{3 / 2}$ degrees of freedom
- M5 - n^{3} degrees of freedom
- No known Lagrangian description

Introduction

M-Branes are mysterious objects
In the case of a single M-brane the full supersymmetric dynamics are known and have powerful, seemingly magical properties

- M2 - [Bergshoeff, Townsend, Sezgin] (1987)
- M5 - [Howe, Sezgin, West], [Schwarz, Perry] (1996)

But the dynamics of multiple M-branes has proved to be elusive

- No dilaton to enable a weakly coupled limit
- M2- $n^{3 / 2}$ degrees of freedom
- M5 - n^{3} degrees of freedom
- No known Lagrangian description,..., or maybe not.

> Introduction
> $\mathrm{N}=8$
> $\mathrm{~N}=6$
> Conclusions

Contents

Introduction

$\mathrm{N}=8$
$N=6$

Conclusions

$$
N=8
$$

A stack of M2-branes has 8 scalars X^{\prime} and their fermionic superpartners $\Psi, \Gamma_{012} \Psi=-\Psi$.

- We assume that these take values in some vector space \mathcal{A}

$\mathrm{N}=8$

A stack of M2-branes has 8 scalars X^{\prime} and their fermionic superpartners $\Psi, \Gamma_{012} \Psi=-\Psi$.

- We assume that these take values in some vector space \mathcal{A}

A natural ansatz for the susy algebra is

$$
\begin{aligned}
\delta X^{\prime} & =i \bar{\epsilon} \Gamma^{\prime} \Psi \\
\delta \Psi & =\partial_{\mu} X^{\prime} \Gamma^{\mu} \Gamma^{\prime} \epsilon+\left[X^{\prime}, X^{J}, X^{K}\right] \Gamma^{I J K} \epsilon,
\end{aligned}
$$

where $[A, B, C]$ is totally anti-symmetric triple product on \mathcal{A}.

- So \mathcal{A} needs a triple product: 3-algebra

$\mathrm{N}=8$

A stack of M2-branes has 8 scalars X^{\prime} and their fermionic superpartners $\Psi, \Gamma_{012} \Psi=-\Psi$.

- We assume that these take values in some vector space \mathcal{A}

A natural ansatz for the susy algebra is

$$
\begin{aligned}
\delta X^{\prime} & =i \bar{\epsilon} \Gamma^{\prime} \Psi \\
\delta \Psi & =\partial_{\mu} X^{\prime} \Gamma^{\mu} \Gamma^{\prime} \epsilon+\left[X^{\prime}, X^{J}, X^{K}\right] \Gamma^{I J K} \epsilon,
\end{aligned}
$$

where $[A, B, C]$ is totally anti-symmetric triple product on \mathcal{A}.

- So \mathcal{A} needs a triple product: 3-algebra

For an M2 ending on an M5-brane this gives the BPS equation

$$
\begin{equation*}
\frac{d X^{\prime}}{d\left(x^{2}\right)}=\epsilon^{I J K L}\left[X^{J}, X^{K}, X^{L}\right] \tag{Basu,Harvey}
\end{equation*}
$$

Closure of the algebra implies a gauge symmetry:

$$
\left[\delta_{1}, \delta_{2}\right] X^{\prime}=2 i \bar{\epsilon}_{1} \Gamma^{\mu} \epsilon_{2} \partial_{\mu} X^{\prime}+2 i \bar{\epsilon}_{1} \Gamma^{J K} \epsilon_{2}\left[X^{J}, X^{K}, X^{\prime}\right]
$$

$$
N=8
$$

Closure of the algebra implies a gauge symmetry:

$$
\left[\delta_{1}, \delta_{2}\right] X^{\prime}=2 i \bar{\epsilon}_{1} \Gamma^{\mu} \epsilon_{2} \partial_{\mu} X^{\prime}+2 i \bar{\epsilon}_{1} \Gamma^{J K} \epsilon_{2}\left[X^{J}, X^{K}, X^{\prime}\right]
$$

This must be dealt with to realize the full superalgebra We will proceed by introducing a basis T^{a} for \mathcal{A}

$$
\left[T^{a}, T^{b}, T^{c}\right]=f^{a b c}{ }_{d} T^{d}, \quad f_{d}^{a b c}{ }_{d}=f^{[a b c]}{ }_{d}
$$

so we also introduce a gauge field

$$
\delta X_{d}^{\prime}=\Lambda_{a b} f^{a b c}{ }_{d} X_{c}^{\prime} \quad D_{\mu} X_{c}^{\prime}=\partial_{\mu} X_{c}^{\prime}-\tilde{A}_{\mu}{ }^{c}{ }_{d} X_{d}^{\prime}
$$

- Independently closed using a different, but equivalent algebraic approach [Gustavsson].

> Introduction
> $\mathrm{N}=8$
> $\mathrm{~N}=6$
> Conclusions

$$
N=8
$$

Full superalgebra takes the form

$$
\begin{aligned}
\delta X_{d}^{\prime} & =i \bar{\epsilon} \Gamma^{\prime} \Psi_{d} \\
\delta \Psi_{d} & =D_{\mu} X_{d}^{\prime} \Gamma^{\mu} \Gamma^{\prime} \epsilon-\frac{1}{6} X_{a}^{\prime} X_{b}^{J} X_{c}^{K} f^{a b c}{ }_{d} \Gamma^{I J K} \epsilon \\
\delta \tilde{A}_{\mu}{ }^{c}{ }_{d} & =i \bar{\epsilon} \Gamma_{\mu} \Gamma_{l} X_{a}^{\prime} \Psi_{b} f^{a b c}{ }_{d},
\end{aligned}
$$

Indeed this closes (on-shell) if $f^{\text {abcd }}$ satisfies the fundamental identity:

$$
f^{e f g}{ }_{b} f^{c b a}{ }_{d}+f^{f e a}{ }_{b} f^{c b g}{ }_{d}+f^{g a f}{ }_{b} f^{c e b}{ }_{d}+f^{a g e}{ }_{b} f^{c f b}{ }_{d}=0 .
$$

$\mathrm{N}=8$

Full superalgebra takes the form

$$
\begin{aligned}
\delta X_{d}^{\prime} & =i \bar{\epsilon} \Gamma^{\prime} \Psi_{d} \\
\delta \Psi_{d} & =D_{\mu} X_{d}^{\prime} \Gamma^{\mu} \Gamma^{\prime} \epsilon-\frac{1}{6} X_{a}^{\prime} X_{b}^{J} X_{c}^{K} f^{a b c}{ }_{d} \Gamma^{I J K} \epsilon \\
\delta \tilde{A}_{\mu}{ }^{c}{ }_{d} & =i \bar{\epsilon} \Gamma_{\mu} \Gamma_{l} X_{a}^{\prime} \Psi_{b} f^{a b c}{ }_{d},
\end{aligned}
$$

Indeed this closes (on-shell) if $f^{\text {abcd }}$ satisfies the fundamental identity:

$$
f^{e f g}{ }_{b} f^{c b a}{ }_{d}+f^{f e a}{ }_{b} f^{c b g}{ }_{d}+f^{g a f}{ }_{b} f^{c e b}{ }_{d}+f^{a g e}{ }_{b} f^{c f b}{ }_{d}=0 .
$$

This ensures that the gauge symmetries generated by the triple product are those of a Lie-algebra

> Introduction
> $\mathrm{N}=\mathbf{8}$
> $\mathrm{N}=6$
> Conclusions

$$
N=8
$$

The invariant Lagrangian is a Chern-Simons theory:

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{2}\left(D_{\mu} X^{a l}\right)\left(D^{\mu} X_{a}^{\prime}\right)+\frac{i}{2} \bar{\Psi}^{a} \Gamma^{\mu} D_{\mu} \Psi_{a}+\frac{i}{4} \bar{\Psi}_{b} \Gamma_{I J} X_{c}^{\prime} X_{d}^{J} \Psi_{a} f^{a b c d} \\
& +\frac{1}{2} \varepsilon^{\mu \nu \lambda}\left(f^{a b c d} A_{\mu a b} \partial_{\nu} A_{\lambda c d}+\frac{2}{3} f^{c d a}{ }_{g} f^{e f g b} A_{\mu a b} A_{\nu c d} A_{\lambda e f}\right) \\
& -\frac{1}{12} \operatorname{Tr}\left(\left[X^{\prime}, X^{J}, X^{K}\right]\right)^{2}
\end{aligned}
$$

- Tr is an invariant trace (or inner-product) on \mathcal{A}
- gauge invariance implies $f^{a b c d}=f^{[a b c d]}$
- $\tilde{A}_{\mu}{ }^{c}{ }_{d}=f^{a b c}{ }_{d} A_{\mu a b}$

This Lagrangian has all the expected symmetries of multiple M2-branes: $\mathcal{N}=8$ supersymmetry, $S O(8)$ R-symmetry and Parity.

$$
N=8
$$

However, if Tr is positive definite then there is only one, finite dimensional, solution [Nagy],[Gauntlett, Gutowski],[Papadopoulos]:

$$
f^{a b c d}=\frac{2 \pi}{k} \varepsilon^{a b c d}
$$

In this case the Lagrangian is that of an $S U(2) \times S U(2)$
Chern-Simons theory coupled to matter in the bi-fundamental.

- quantization condition implies $k \in \mathbf{Z}$

$$
\mathrm{N}=8
$$

However, if Tr is positive definite then there is only one, finite dimensional, solution [Nagy],[Gauntlett, Gutowski],[Papadopoulos]:

$$
f^{a b c d}=\frac{2 \pi}{k} \varepsilon^{a b c d}
$$

In this case the Lagrangian is that of an $S U(2) \times S U(2)$ Chern-Simons theory coupled to matter in the bi-fundamental.

- quantization condition implies $k \in \mathbf{Z}$

Infinite dimensional examples can be constructed by considering the Nambu bracket on an 'auxiliary' three-manifold Σ.

- More recently been identified with a single M5 on $\mathbf{R}^{3} \times \Sigma$ [Ho,Matsuo] [Banados, Townsend]

What is the relation of this to M-theory (see also [Distler,Mukhi,Papageorgakis,van Raamsdonk]):

$$
N=8
$$

What is the relation of this to M-theory (see also [Distler,Mukhi,Papageorgakis,van Raamsdonk]):

Vacuum moduli space $\left(\mathbf{R}^{8} \times \mathbf{R}^{8}\right) / D_{2 k}$

- $k=1 \mathbf{R}^{8} / \mathbf{Z}_{2} \times \mathbf{R}^{8} / \mathbf{Z}_{2}$
- moduli space of an SO(4) gauge theory
- $k=2\left(\mathbf{R}^{8} / \mathbf{Z}_{2} \times \mathbf{R}^{8} / \mathbf{Z}_{2}\right) / \mathbf{Z}_{2}$
- moduli space of an $S O(5)$ gauge theory
- 2 objects on $\mathbf{R}^{\mathbf{8}} / \mathbf{Z}_{2}$

$\mathrm{N}=8$

There are two maximally-susy $\mathbf{R}^{8} / \mathbf{Z}_{2}$ orbifolds of two M2's with gauge groups $O(4)$ and $S O(5)$ (with and without discrete torsion) [Sethi],[Berkooz,Kapustin]

- $k=1$ case differs from orbifold in that $S O(4)$ should be $O(4)$
- Good agreement for $k=2$
- No clear picture for $k>2$
- The orbifold action moves the branes and doesn't preserve the distances between them
- N.B. for $k=3\left(\mathbf{R}^{8} \times \mathbf{R}^{8}\right) / D_{6}$ is the moduli space of a G_{2} gauge theory

$$
N=8
$$

It is interesting to note that on the Coulomb branch one finds the classical mass formula
$M=\frac{2 \pi}{k}$ (area of a triangle with vertices on an M2)

- Tempting clue to microscopic states in M-theory analogous to stretched open strings
- N.B. orbifold action preserves M
- hints towards an origin of N^{3}.
- note that there is an enhanced gauge symmetry whenever the M2s are collinear
- strongly coupled (c.f. origin of \mathbf{R}^{7} Coulomb branch in D2-branes)

$$
N=8
$$

So it is of great interest to generalize the Lagrangian construction:

$$
N=8
$$

So it is of great interest to generalize the Lagrangian construction:
The equations of motion don't require that $f^{a b c d}$ is totally anti-symmetric: infinitely many examples [Gran, Nilsson, Petersson]

- But no gauge invariant trace, so no observables

$$
N=8
$$

So it is of great interest to generalize the Lagrangian construction:
The equations of motion don't require that $f^{a b c d}$ is totally anti-symmetric: infinitely many examples [Gran, Nilsson, Petersson]

- But no gauge invariant trace, so no observables

Infinitely many models with $h^{a b}$ having a Lorentzian signature have been proposed by [Gomis, Milanesi, Russo], [Benvenuti, Rodriguez-Gomez, Tonni, Verlinde] and [Ho, Imamura, Matuso]

- Despite the negative norm scalars the quantum theory appears to be unitary.
- Their status is not clear

Look for less supersymmetry:
[Aharony, Bergman, Jafferis, Maldacena] proposed models with $\mathcal{N}=6$ and an $S U(4) \times U(1)$ R-symmetry.

- Chern-Simons matter theory with gauge group $U(N) \times U(N)$ for any N and level k
- Proposed to describe $N \mathrm{M} 2$'s on $\mathbf{R}^{8} / \mathbf{Z}_{k}$
- Including $k=1$!
- Large N and k limit: dual to $a d S_{4} \times S^{7} / \mathbf{Z}_{k}$ (and $a d S_{4} \times \mathbf{C P}^{3}$ by compactification to type IIA)

$$
N=6
$$

Look for less supersymmetry:
[Aharony, Bergman, Jafferis, Maldacena] proposed models with $\mathcal{N}=6$ and an $S U(4) \times U(1)$ R-symmetry.

- Chern-Simons matter theory with gauge group $U(N) \times U(N)$ for any N and level k
- Proposed to describe N M2's on $\mathbf{R}^{8} / \mathbf{Z}_{k}$
- Including $k=1$!
- Large N and k limit: dual to $a d S_{4} \times S^{7} / \mathbf{Z}_{k}$ (and $a d S_{4} \times \mathbf{C P} \mathbf{P}^{3}$ by compactification to type IIA)

More recently [Aharony, Bergman, Jafferis] generalized to include discrete torsion by considering gauge group $U\left(N_{1}\right) \times U\left(N_{2}\right)$

- Includes $\mathbf{R}^{8} / \mathbf{Z}_{2} S O(5)$ orbifold but without manifest $\mathcal{N}=8$

> Introduction $\mathrm{N}=8$ $\mathrm{~N}=6$ Conclusions

$$
N=6
$$

So let us derive the most general scale-invariant Lagrangian with $\mathcal{N}=6$ and an $S U(4) \times U(1)$ R-symmetry:

- scalars $Z_{a}^{A} \in 4_{1}$ of $S U(4) \times U(1)$
- fermions $\psi_{A_{a}} \in \overline{\mathbf{4}}_{1}$ of $S U(4) \times U(1)$
- susys $\epsilon_{A B} \in \mathbf{6}_{0}$ of $S U(4) \times U(1)$

$$
\text { - }\left(\epsilon_{A B}\right)^{*}=\epsilon^{A B}=\frac{1}{2} \varepsilon^{A B C D} \epsilon_{C D}
$$

Complex conjugation raises/lowers and A-index and flips the $U(1)$ charge

$$
N=6
$$

Starting from the most general form for the susy's one finds

$$
\begin{aligned}
\delta Z_{d}^{A} & =i \bar{\epsilon}^{A B} \psi_{B d} \\
\delta \psi_{B d} & =\gamma^{\mu} D_{\mu} Z_{d}^{A} \epsilon_{A B}+f^{a b c}{ }_{d} Z_{a}^{C} Z_{b}^{A} Z_{C c} \epsilon_{A B}+f^{a b c}{ }_{d} Z_{a}^{C} Z_{b}^{D} Z_{B c} \epsilon C D \\
\delta \tilde{A}_{\mu}{ }^{c}{ }_{d} & =-i \bar{\epsilon}_{A B} \gamma_{\mu} Z_{a}^{A} \psi_{b}^{B} f^{c a b}{ }_{d}+i \bar{\epsilon}^{A B} \gamma_{\mu} Z_{A b} \psi_{B a} f^{c b a}{ }_{d}
\end{aligned}
$$

Provided that

$$
f^{e f g}{ }_{b} f^{c b a}{ }_{d}+f^{f e a}{ }_{b} f^{c b g}{ }_{d}+f^{* g a f}{ }_{b} f^{c e b}{ }_{d}+f^{* a g e}{ }_{b} f^{c f b}{ }_{d}=0
$$

and

$$
f^{a b c d}=-f^{b a c d}=-f^{a b d c}=f^{* c d a b} .
$$

i.e. $f^{\text {abcd }}$ need not be real nor totally anti-symmetric.

- Everything is determined by specifying a triple product

$$
[X, Y ; Z] \text { on } \mathcal{A}
$$

> Introduction $\mathrm{N}=8$ $\mathrm{~N}=6$ Conclusions

$$
N=6
$$

The Lagrangian is

$$
\begin{aligned}
\mathcal{L}= & -D_{\mu} Z_{a}^{A} D^{\mu} Z_{A}^{a}-i \bar{\psi}_{a}^{A} \gamma^{\mu} D_{\mu} \psi_{A}^{a} \\
& -i f^{a b c d} \bar{\psi}_{d}^{A} \psi_{A a} Z_{b}^{B} Z_{B c}+2 i f^{a b c d} \bar{\psi}_{d}^{A} \psi_{B a} Z_{b}^{B} Z_{A c} \\
& +\frac{i}{2} \varepsilon_{A B C D} f^{a b c d} \bar{\psi}_{d}^{A} \psi_{c}^{B} Z_{a}^{C} Z_{b}^{D}-\frac{i}{2} \varepsilon^{A B C D} f^{c d a b} \bar{\psi}_{A c} \psi_{B d} Z_{C a} Z_{D b} \\
& +\frac{1}{2} \varepsilon^{\mu \nu \lambda}\left(f^{a b c d} A_{\mu c b} \partial_{\nu} A_{\lambda d a}+\frac{2}{3} f^{a c d}{ }_{g} f^{g e f b} A_{\mu a b} A_{\nu d c} A_{\lambda f e}\right) \\
& -\frac{2}{3} \Upsilon_{B d}^{C D} \Upsilon_{C D}^{B d} .
\end{aligned}
$$

with
$\Upsilon_{B d}^{C D}=Z_{a}^{C} Z_{b}^{D} Z_{B c} f^{a b c}{ }_{d}-\frac{1}{2} \delta_{B}^{C} Z_{a}^{E} Z_{b}^{D} Z_{E c} f^{a b c}{ }_{d}+\frac{1}{2} \delta_{B}^{D} Z_{a}^{E} Z_{b}^{C} Z_{E c} f^{a b c}{ }_{d}$

$$
N=6
$$

An infinite class of 3-algebras can be constructed as follows:

- $\mathcal{A}=$ linear maps between two complex vector spaces V_{1} and V_{2} with dimensions N_{1} and N_{2}.
- $[X, Y ; Z]=X Z^{\dagger} Y-Y Z^{\dagger} X$

$$
N=6
$$

An infinite class of 3-algebras can be constructed as follows:

- $\mathcal{A}=$ linear maps between two complex vector spaces V_{1} and V_{2} with dimensions N_{1} and N_{2}.
- $[X, Y ; Z]=X Z^{\dagger} Y-Y Z^{\dagger} X$

The gauge symmetry generated by the triple product is

$$
\delta X=X M_{1}-M_{2} X
$$

with $M_{1} \in u\left(N_{1}\right)$ and $M_{2} \in u\left(N_{2}\right)$.
The fundamental identity ensures that

$$
\delta[X, Y ; Z]=[X, Y ; Z] M_{1}-M_{2}[X, Y ; Z]
$$

$N=6$

The Lagrangian reduces to the $\mathcal{N}=6, U(N) \times U(N)$
Chern-Simons model of ABJM for $N_{1}=N_{2}$ and also the more general $U\left(N_{1}\right) \times U\left(N_{2}\right)$ models of ABJ.

There are also other possibilities:

- $\operatorname{SU}\left(N_{1}\right) \times \operatorname{SU}\left(N_{2}\right)$
- $\operatorname{Sp}(2 N) \times O(2)$ [Hosomichi,3-Lee,Park]
- Classified by [Schnabl and Tachikawa]
- see also papers by [Bandres, Lipstein, Schwarz], [Bergshoeff, Holm, Roest, Samtleben, Serzgin], [Cherkis, Saemann][Nilsson, Palmkvist]

- We constructed a (rather unique!) $\mathcal{N}=8$ 3D Lagrangian field theory with an SO(8) R-symmetry and Parity
- New maximally superconformal Chern-Simons gauge theory that is not Yang-Mills
- Identified with 2 M 2 -branes on $\mathbf{R}^{8} / \mathbf{Z}_{2}$ (at least for $k=2$)

Conclusions

- We constructed a (rather unique!) $\mathcal{N}=83 \mathrm{D}$ Lagrangian field theory with an SO(8) R-symmetry and Parity
- New maximally superconformal Chern-Simons gauge theory that is not Yang-Mills
- Identified with 2 M 2 -branes on $\mathbf{R}^{8} / \mathbf{Z}_{2}$ (at least for $k=2$)
- Infinitely many theories with $\mathcal{N}=6$ and an $S U(4) \times U(1)$ R-symmetry
- Proposed by ABJM and ABJ as N M2's on $\mathbf{R}^{8} / \mathbf{Z}_{k}$, for $k=1,2, \ldots$
Introduction
$\mathrm{N}=8$
$\mathrm{~N}=6$
Conclusions

Conclusions

- We constructed a (rather unique!) $\mathcal{N}=8$ 3D Lagrangian field theory with an SO(8) R-symmetry and Parity
- New maximally superconformal Chern-Simons gauge theory that is not Yang-Mills
- Identified with 2 M 2 -branes on $\mathbf{R}^{8} / \mathbf{Z}_{2}$ (at least for $k=2$)
- Infinitely many theories with $\mathcal{N}=6$ and an $S U(4) \times U(1)$ R-symmetry
- Proposed by ABJM and ABJ as N M2's on $\mathbf{R}^{8} / \mathbf{Z}_{k}$, for $k=1,2, \ldots$
- Gained some insight into the degrees of freedom of multiple M2-branes?
- Classically the massive states associated to triangles with vertices on the M2's

Conclusions

There are still many issues to understand:

- What is the role of the $\mathcal{N}=8$ theory?
- Understand the enhancement of $k=1,2 \mathrm{ABJM}$ to $\mathcal{N}=8$
- What is the role of the Lorentzian theories?
- Equivalent to $\mathcal{N}=8$ super-Yang-Mills? [Gomis, Rodriguez-Gomez,van Raamsdonk, Verlinde], [Bandres, Lipstein, Schwarz]
- M2/D2's on a cylinder [Banerjee, Sen]
- scaling limit of ABJM [Honma,Iso,Sumitomo,Umetsu,Zhang]
- Can one see the $n^{\frac{3}{2}}$?
- e.g. see [de Madeiros,Figueroa-O'Farrill, Mendez-Escobar] and [Chu,Hi,Matsuo,Shiba]

We have tried to stress the central role of 3-algebras. Why?

Conclusions

We have tried to stress the central role of 3-algebras. Why?

- They naturally encode all the information of the theory
- Classification of $\mathcal{N} \geq 6$ theories is a classification of 3-algebras.
- The dynamics of M2-branes is primarily determined by the scalars and fermions and these don't directly see a Lie-bracket.
- Hopefully they are interesting in their own right and a clue to the microscopic degrees of freedom in M-theory.

