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Introduction

M-Branes are mysterious objects

In the case of a single M-brane the full supersymmetric dynamics
are known and have powerful, seemingly magical properties

! M2 - [Bergshoeff, Townsend, Sezgin] (1987)

! M5 - [Howe, Sezgin, West], [Schwarz, Perry] (1996)

But the dynamics of multiple M-branes has proved to be elusive

! No dilaton to enable a weakly coupled limit

! M2 - n3/2 degrees of freedom

! M5 - n3 degrees of freedom

! No known Lagrangian description,..., or maybe not.
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N=8

A stack of M2-branes has 8 scalars X I and their fermionic
superpartners Ψ, Γ012Ψ = −Ψ.

! We assume that these take values in some vector space A

A natural ansatz for the susy algebra is

δX I = i ε̄ΓIΨ

δΨ = ∂µX IΓµΓI ε + [X I ,X J ,XK ]ΓIJK ε,

where [A,B,C ] is totally anti-symmetric triple product on A.
! So A needs a triple product: 3-algebra

For an M2 ending on an M5-brane this gives the BPS equation

dX I

d(x2)
= εIJKL[X J ,XK ,X L] [Basu,Harvey ]
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Closure of the algebra implies a gauge symmetry:

[δ1, δ2]X
I = 2i ε̄1Γ

µε2∂µX I + 2i ε̄1Γ
JK ε2[X

J ,XK ,X I ]

This must be dealt with to realize the full superalgebra
We will proceed by introducing a basis T a for A

[T a,T b,T c ] = f abc
dT d , f abc

d = f [abc]
d

so we also introduce a gauge field

δX I
d = Λabf

abc
dX I

c DµX I
c = ∂µX I

c − Ãµ
c
dX I

d

! Independently closed using a different, but equivalent
algebraic approach [Gustavsson].
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Full superalgebra takes the form

δX I
d = i ε̄ΓIΨd

δΨd = DµX I
dΓµΓI ε− 1

6
X I

aX J
b XK

c f abc
dΓIJK ε

δÃµ
c
d = i ε̄ΓµΓIX

I
aΨbf

abc
d ,

Indeed this closes (on-shell) if f abcd satisfies the fundamental
identity:

f efg
bf

cba
d + f fea

bf
cbg

d + f gaf
bf

ceb
d + f age

bf
cfb

d = 0.

This ensures that the gauge symmetries generated by the triple
product are those of a Lie-algebra
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The invariant Lagrangian is a Chern-Simons theory:

L = −1

2
(DµX aI )(DµX I

a ) +
i

2
Ψ̄aΓµDµΨa +

i

4
Ψ̄bΓIJX

I
cX J

d Ψaf
abcd

+
1

2
εµνλ(f abcdAµab∂νAλcd +

2

3
f cda

g f efgbAµabAνcdAλef )

− 1

12
Tr([X I ,X J ,XK ])2

! Tr is an invariant trace (or inner-product) on A
! gauge invariance implies f abcd = f [abcd ]

! Ãµ
c
d = f abc

dAµab

This Lagrangian has all the expected symmetries of multiple
M2-branes: N = 8 supersymmetry, SO(8) R-symmetry and Parity.
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However, if Tr is positive definite then there is only one, finite
dimensional, solution [Nagy],[Gauntlett, Gutowski],[Papadopoulos]:

f abcd =
2π

k
εabcd

In this case the Lagrangian is that of an SU(2)× SU(2)
Chern-Simons theory coupled to matter in the bi-fundamental.

! quantization condition implies k ∈ Z

Infinite dimensional examples can be constructed by considering
the Nambu bracket on an ‘auxiliary’ three-manifold Σ.

! More recently been identified with a single M5 on R3 × Σ
[Ho,Matsuo] [Banados, Townsend]

Introduction
N=8
N=6

Conclusions

N=8

However, if Tr is positive definite then there is only one, finite
dimensional, solution [Nagy],[Gauntlett, Gutowski],[Papadopoulos]:

f abcd =
2π

k
εabcd

In this case the Lagrangian is that of an SU(2)× SU(2)
Chern-Simons theory coupled to matter in the bi-fundamental.

! quantization condition implies k ∈ Z

Infinite dimensional examples can be constructed by considering
the Nambu bracket on an ‘auxiliary’ three-manifold Σ.

! More recently been identified with a single M5 on R3 × Σ
[Ho,Matsuo] [Banados, Townsend]



Introduction
N=8
N=6

Conclusions

N=8

What is the relation of this to M-theory (see also
[Distler,Mukhi,Papageorgakis,van Raamsdonk]):

Vacuum moduli space (R8 × R8)/D2k

! k = 1 R8/Z2 × R8/Z2

! moduli space of an SO(4) gauge theory

! k = 2 (R8/Z2 × R8/Z2)/Z2

! moduli space of an SO(5) gauge theory

! 2 objects on R8/Z2
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There are two maximally-susy R8/Z2 orbifolds of two M2’s with
gauge groups O(4) and SO(5) (with and without discrete torsion)
[Sethi],[Berkooz,Kapustin]

! k = 1 case differs from orbifold in that SO(4) should be O(4)

! Good agreement for k = 2
! No clear picture for k > 2

! The orbifold action moves the branes and doesn’t preserve the
distances between them

! N.B. for k = 3 (R8 × R8)/D6 is the moduli space of a G2

gauge theory
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It is interesting to note that on the Coulomb branch one finds the
classical mass formula

M =
2π

k
(area of a triangle with vertices on an M2)

! Tempting clue to microscopic states in M-theory analogous to
stretched open strings

! N.B. orbifold action preserves M

! hints towards an origin of N3.
! note that there is an enhanced gauge symmetry whenever the

M2s are collinear
! strongly coupled (c.f. origin of R7 Coulomb branch in

D2-branes)
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So it is of great interest to generalize the Lagrangian construction:

The equations of motion don’t require that f abcd is totally
anti-symmetric: infinitely many examples [Gran, Nilsson,
Petersson]

! But no gauge invariant trace, so no observables

Infinitely many models with hab having a Lorentzian signature have
been proposed by [Gomis, Milanesi, Russo], [Benvenuti,
Rodriguez-Gomez, Tonni, Verlinde] and [Ho, Imamura, Matuso]

! Despite the negative norm scalars the quantum theory appears
to be unitary.

! Their status is not clear
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N=6

Look for less supersymmetry:

[Aharony, Bergman, Jafferis, Maldacena] proposed models with
N = 6 and an SU(4)× U(1) R-symmetry.

! Chern-Simons matter theory with gauge group U(N)× U(N)
for any N and level k

! Proposed to describe N M2’s on R8/Zk
! Including k = 1!

! Large N and k limit: dual to adS4 × S7/Zk (and adS4 × CP3

by compactification to type IIA)

More recently [Aharony, Bergman, Jafferis] generalized to include
discrete torsion by considering gauge group U(N1)× U(N2)

! Includes R8/Z2 SO(5) orbifold but without manifest N = 8
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So let us derive the most general scale-invariant Lagrangian with
N = 6 and an SU(4)× U(1) R-symmetry:

! scalars ZA
a ∈ 41 of SU(4)× U(1)

! fermions ψAa ∈ 4̄1 of SU(4)× U(1)
! susys εAB ∈ 60 of SU(4)× U(1)

! (εAB)∗ = εAB = 1
2εABCDεCD

Complex conjugation raises/lowers and A-index and flips the U(1)
charge
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Starting from the most general form for the susy’s one finds

δZA
d = i ε̄ABψBd

δψBd = γµDµZA
d εAB + f abc

dZC
a ZA

b ZCcεAB + f abc
dZC

a ZD
b ZBcεCD

δÃµ
c
d = −i ε̄ABγµZA

a ψB
b f cab

d + i ε̄ABγµZAbψBaf
cba

d

Provided that

f efg
bf

cba
d + f fea

bf
cbg

d + f ∗gaf
bf

ceb
d + f ∗age

bf
cfb

d = 0

and
f abcd = −f bacd = −f abdc = f ∗cdab.

i.e. f abcd need not be real nor totally anti-symmetric.
! Everything is determined by specifying a triple product

[X ,Y ;Z ] on A
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The Lagrangian is

L = −DµZA
a DµZ a

A − iψ̄A
a γµDµψa

A

−if abcd ψ̄A
d ψAaZ

B
b ZBc + 2if abcd ψ̄A

d ψBaZ
B
b ZAc

+
i

2
εABCD f abcd ψ̄A

d ψB
c ZC

a ZD
b −

i

2
εABCD f cdabψ̄AcψBdZCaZDb

+
1

2
εµνλ(f abcdAµcb∂νAλda +

2

3
f acd

g f gefbAµabAνdcAλfe)

−2

3
ΥCD

Bd ΥBd
CD .

with

ΥCD
Bd = ZC

a ZD
b ZBc f

abc
d−

1

2
δC
B ZE

a ZD
b ZEc f

abc
d+

1

2
δD
B ZE

a ZC
b ZEc f

abc
d
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An infinite class of 3-algebras can be constructed as follows:

! A = linear maps between two complex vector spaces V1 and
V2 with dimensions N1 and N2.

! [X ,Y ;Z ] = XZ †Y − YZ †X

The gauge symmetry generated by the triple product is

δX = XM1 −M2X

with M1 ∈ u(N1) and M2 ∈ u(N2).

The fundamental identity ensures that

δ[X ,Y ;Z ] = [X ,Y ;Z ]M1 −M2[X ,Y ;Z ]
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The Lagrangian reduces to the N = 6, U(N)× U(N)
Chern-Simons model of ABJM for N1 = N2 and also the more
general U(N1)× U(N2) models of ABJ.

There are also other possibilities:

! SU(N1)× SU(N2)

! Sp(2N)× O(2) [Hosomichi,3-Lee,Park]

! Classified by [Schnabl and Tachikawa]

! see also papers by [Bandres, Lipstein, Schwarz], [Bergshoeff,
Holm, Roest, Samtleben, Serzgin], [Cherkis,
Saemann][Nilsson, Palmkvist]
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Conclusions

! We constructed a (rather unique!) N = 8 3D Lagrangian field
theory with an SO(8) R-symmetry and Parity

! New maximally superconformal Chern-Simons gauge theory
that is not Yang-Mills

! Identified with 2 M2-branes on R8/Z2 (at least for k = 2)

! Infinitely many theories with N = 6 and an SU(4)× U(1)
R-symmetry

! Proposed by ABJM and ABJ as N M2’s on R8/Zk , for
k = 1, 2, ...

! Gained some insight into the degrees of freedom of multiple
M2-branes?

! Classically the massive states associated to triangles with
vertices on the M2’s
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There are still many issues to understand:

! What is the role of the N = 8 theory?

! Understand the enhancement of k = 1, 2 ABJM to N = 8
! What is the role of the Lorentzian theories?

! Equivalent to N = 8 super-Yang-Mills? [Gomis,
Rodriguez-Gomez,van Raamsdonk, Verlinde], [Bandres,
Lipstein, Schwarz]

! M2/D2’s on a cylinder [Banerjee, Sen]
! scaling limit of ABJM [Honma,Iso,Sumitomo,Umetsu,Zhang]

! Can one see the n
3
2 ?

! e.g. see [de Madeiros,Figueroa-O’Farrill, Mendez-Escobar] and
[Chu,Hi,Matsuo,Shiba]
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Conclusions

We have tried to stress the central role of 3-algebras. Why?

! They naturally encode all the information of the theory
! Classification of N ≥ 6 theories is a classification of 3-algebras.

! The dynamics of M2-branes is primarily determined by the
scalars and fermions and these don’t directly see a Lie-bracket.

! Hopefully they are interesting in their own right and a clue to
the microscopic degrees of freedom in M-theory.
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