Multiple Membrane Dynamics

Sunil Mukhi
 Tata Institute of Fundamental Research, Mumbai

Strings 2008, Geneva, August 19, 2008

- Based on:
"M2 to D2",
SM and Costis Papageorgakis,
arXiv:0803.3218 [hep-th], JHEP 0805:085 (2008).
" M2-branes on M-folds",
Jacques Distler, SM, Costis Papageorgakis and Mark van Raamsdonk, arXiv:0804.1256 [hep-th], JHEP 0805:038 (2008).
" D2 to D2",
Bobby Ezhuthachan, SM and Costis Papageorgakis, arXiv:0806.1639 [hep-th], JHEP 0807:041, (2008).

Mohsen Alishahiha and SM, to appear

Outline

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Motivation

- We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.

Motivation

- We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.
- The latter should hold the key to M-theory:

Motivation

- We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.
- The latter should hold the key to M-theory:

- While there is an obstacle (due to (anti) self-dual 2-forms) to writing the $M 5$-brane field theory, there is no obstacle for M2-branes as far as we know.

Motivation

- We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.
- The latter should hold the key to M-theory:

- While there is an obstacle (due to (anti) self-dual 2-forms) to writing the M5-brane field theory, there is no obstacle for M2-branes as far as we know.
- And yet, despite ~ 200 recent papers - and two Strings 2008 talks - on the subject, we don't exactly know what the multiple membrane theory is.

Motivation

- We understand the field theory on multiple D-branes rather well, but the one on multiple M-branes not so well.
- The latter should hold the key to M-theory:

- While there is an obstacle (due to (anti) self-dual 2-forms) to writing the $M 5$-brane field theory, there is no obstacle for M2-branes as far as we know.
- And yet, despite ~ 200 recent papers - and two Strings 2008 talks - on the subject, we don't exactly know what the multiple membrane theory is.
- Even the French aristocracy doesn't seem to know...

－Of course，there is one description that is clearly right and has manifest $\mathcal{N}=8$ supersymmetry（but not manifest conformal symmetry）：

$$
\lim _{g_{Y M} \rightarrow \infty} \frac{1}{g_{Y M}^{2}} \mathcal{L}_{S Y M}
$$

- Of course, there is one description that is clearly right and has manifest $\mathcal{N}=8$ supersymmetry (but not manifest conformal symmetry):

$$
\lim _{g_{Y M} \rightarrow \infty} \frac{1}{g_{Y M}^{2}} \mathcal{L}_{S Y M}
$$

- The question is whether this conformal IR fixed point has an explicit Lagrangian description wherein all the symmetries are manifest.
- Of course, there is one description that is clearly right and has manifest $\mathcal{N}=8$ supersymmetry (but not manifest conformal symmetry):

$$
\lim _{g_{Y M} \rightarrow \infty} \frac{1}{g_{Y M}^{2}} \mathcal{L}_{S Y M}
$$

- The question is whether this conformal IR fixed point has an explicit Lagrangian description wherein all the symmetries are manifest.
- This includes a global $S O(8)_{R}$ symmetry describing rotations of the space transverse to the membranes - enhanced from the $S O(7)$ of SYM.
- Of course, there is one description that is clearly right and has manifest $\mathcal{N}=8$ supersymmetry (but not manifest conformal symmetry):

$$
\lim _{g_{Y M} \rightarrow \infty} \frac{1}{g_{Y M}^{2}} \mathcal{L}_{S Y M}
$$

- The question is whether this conformal IR fixed point has an explicit Lagrangian description wherein all the symmetries are manifest.
- This includes a global $S O(8)_{R}$ symmetry describing rotations of the space transverse to the membranes - enhanced from the $S O(7)$ of SYM.
- Let us look at the Lagrangians that have been proposed to describe this limit.
- Euclidean 3-algebra [Bagger-Lambert, Gustavsson]: Labelled by integer k. Algebra is $S U(2) \times S U(2)$.
\Rightarrow Argued to describe a pair of $M 2$ branes at Z_{k} singularity. But no generalisation to >2 branes.
- Euclidean 3-algebra [Bagger-Lambert, Gustavsson]: Labelled by integer k. Algebra is $S U(2) \times S U(2)$.
\Rightarrow Argued to describe a pair of $M 2$ branes at Z_{k} singularity. But no generalisation to >2 branes.
- Lorentzian 3-algebra [Gomis-Milanesi-Russo,

Benvenuti-Rodriguez-Gomez-Tonni-Verlinde, Bandres-Lipstein-Schwarz, Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]: Based on arbitrary Lie algebras, have $\mathcal{N}=8$ superconformal invariance.
\Rightarrow Certainly correspond to $D 2$-branes, and perhaps to $M 2$-branes. Status of latter unclear at the moment.

- Euclidean 3-algebra [Bagger-Lambert, Gustavsson]: Labelled by integer k. Algebra is $S U(2) \times S U(2)$.
\Rightarrow Argued to describe a pair of $M 2$ branes at Z_{k} singularity. But no generalisation to >2 branes.
- Lorentzian 3-algebra [Gomis-Milanesi-Russo, Benvenuti-Rodriguez-Gomez-Tonni-Verlinde, Bandres-Lipstein-Schwarz, Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]: Based on arbitrary Lie algebras, have $\mathcal{N}=8$ superconformal invariance.
\Rightarrow Certainly correspond to $D 2$-branes, and perhaps to $M 2$-branes. Status of latter unclear at the moment.
- ABJM theories [Aharony-Bergman-Jafferis-Maldacena]: Labelled by algebra $G \times G^{\prime}$ and integer k, with $\mathcal{N}=6$ superconformal invariance. Is actually a "relaxed" 3-algebra.
\Rightarrow Describe multiple M2-branes at orbifold singularities. But the $k=1$ theory is missing two manifest supersymmetries and decoupling of CM mode not visible.
- These theories all have 8 scalars and 8 fermions.
- These theories all have 8 scalars and 8 fermions.
- And they have non-dynamical (Chern-Simons-like) gauge fields.
- These theories all have 8 scalars and 8 fermions.
- And they have non-dynamical (Chern-Simons-like) gauge fields.
- Thus the basic classification is:
(i) Euclidean signature 3-algebras, which are $G \times G$ Chern-Simons theories:
$k \operatorname{tr}\left(\boldsymbol{A} \wedge d \boldsymbol{A}+\frac{2}{3} \boldsymbol{A} \wedge \boldsymbol{A} \wedge \boldsymbol{A}-\tilde{\boldsymbol{A}} \wedge d \tilde{\boldsymbol{A}}-\frac{2}{3} \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}}\right)$ BLG : $G=S U(2)$
ABJM : $G=S U(N)$ or $U(N)$, any N (+ other choices) both : scalars, fermions are bi-fundamental, e.g. $X_{a \dot{a}}^{I}$
(ii) Lorentzian signature 3-algebras, which are $B \wedge F$ theories based on any Lie algebra.
scalars, fermions are singlet + adjoint, e.g. $X_{+}^{I}, \boldsymbol{X}^{I}$
- Both classes make use of the triple product $X^{I J K}$:

Euclidean: $X^{I J K} \sim X^{I} X^{J \dagger} X^{K}, \quad X^{I}$ bi-fundamental
Lorentzian : $X^{I J K} \sim X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+$ cyclic

$$
X_{+}^{I}=\text { singlet, } \boldsymbol{X}^{J}=\text { adjoint }
$$

- Both classes make use of the triple product $X^{I J K}$:

Euclidean : $X^{I J K} \sim X^{I} X^{J \dagger} X^{K}, \quad X^{I}$ bi-fundamental
Lorentzian : $X^{I J K} \sim X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+$ cyclic

$$
X_{+}^{I}=\text { singlet, } \boldsymbol{X}^{J}=\text { adjoint }
$$

- The potential is:

$$
V(X) \sim\left(\boldsymbol{X}^{I J K}\right)^{2}
$$

therefore sextic.

- One might have expected a simple and unique description for the theory on $N \mathrm{M} 2$-branes in flat spacetime.
- One might have expected a simple and unique description for the theory on $N \mathrm{M} 2$-branes in flat spacetime.
- It is basically an analogue of $4 \mathrm{~d} \mathcal{N}=4$ super-Yang-Mills!
- One might have expected a simple and unique description for the theory on $N \mathrm{M} 2$-branes in flat spacetime.
- It is basically an analogue of $4 \mathrm{~d} \mathcal{N}=4$ super-Yang-Mills!
- The only "excuse" we have for not doing better is that the theory we seek will be strongly coupled. So it's not even clear what the classical action means.
- One might have expected a simple and unique description for the theory on $N \mathrm{M} 2$-branes in flat spacetime.
- It is basically an analogue of $4 \mathrm{~d} \mathcal{N}=4$ super-Yang-Mills!
- The only "excuse" we have for not doing better is that the theory we seek will be strongly coupled. So it's not even clear what the classical action means.
- However it's also maximally superconformal, which should give us a lot of power in dealing with it.
- One might have expected a simple and unique description for the theory on $N \mathrm{M} 2$-branes in flat spacetime.
- It is basically an analogue of $4 \mathrm{~d} \mathcal{N}=4$ super-Yang-Mills!
- The only "excuse" we have for not doing better is that the theory we seek will be strongly coupled. So it's not even clear what the classical action means.
- However it's also maximally superconformal, which should give us a lot of power in dealing with it.
- In this talk l'll deal with some things we have understood about the desired theory.

Outline

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

The Higgs mechanism

- For the $G \times G$ Chern-Simons class of theories, the following holds true [SM-Papageorgakis].

The Higgs mechanism

- For the $G \times G$ Chern-Simons class of theories, the following holds true [SM-Papageorgakis].
- If we give a vev v to one component of the bi-fundamental fields, then at energies below this vev, the Lagrangian becomes:

$$
\left.L_{C S}^{(G \times G)}\right|_{\text {vev } v}=\frac{1}{v^{2}} L_{S Y M}^{(G)}+\mathcal{O}\left(\frac{1}{v^{3}}\right)
$$

and the G gauge field has become dynamical!

The Higgs mechanism

- For the $G \times G$ Chern-Simons class of theories, the following holds true [SM-Papageorgakis].
- If we give a vev v to one component of the bi-fundamental fields, then at energies below this vev, the Lagrangian becomes:

$$
\left.L_{C S}^{(G \times G)}\right|_{\text {vev } v}=\frac{1}{v^{2}} L_{S Y M}^{(G)}+\mathcal{O}\left(\frac{1}{v^{3}}\right)
$$

and the G gauge field has become dynamical!

- This is an unusual result. In SYM with gauge group G, when we give a vev to one component of an adjoint scalar, at low energy the Lagrangian becomes:

$$
\left.\frac{1}{g_{Y M}^{2}} L_{S Y M}^{(G)}\right|_{\text {vev } v}=\frac{1}{g_{Y M}^{2}} L_{S Y M}^{\left(G^{\prime} \subset G\right)}
$$

where G^{\prime} is the subgroup that commutes with the vev.

- Let's give a quick derivation of this novel Higgs mechanism, first for $k=1$:

$$
\begin{aligned}
L_{C S} & =\operatorname{tr}\left(\boldsymbol{A} \wedge d \boldsymbol{A}+\frac{2}{3} \boldsymbol{A} \wedge \boldsymbol{A} \wedge \boldsymbol{A}-\tilde{\boldsymbol{A}} \wedge d \tilde{\boldsymbol{A}}-\frac{2}{3} \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}}\right) \\
& =\operatorname{tr}\left(\boldsymbol{A}_{-} \wedge \boldsymbol{F}_{+}+\frac{1}{6} \boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-}\right)
\end{aligned}
$$

where $A_{ \pm}=A \pm \tilde{\boldsymbol{A}}, \quad \boldsymbol{F}_{+}=d \boldsymbol{A}_{+}+\frac{1}{2} \boldsymbol{A}_{+} \wedge \boldsymbol{A}_{+}$.

- Let's give a quick derivation of this novel Higgs mechanism, first for $k=1$:

$$
\begin{aligned}
L_{C S} & =\operatorname{tr}\left(\boldsymbol{A} \wedge d \boldsymbol{A}+\frac{2}{3} \boldsymbol{A} \wedge \boldsymbol{A} \wedge \boldsymbol{A}-\tilde{\boldsymbol{A}} \wedge d \tilde{\boldsymbol{A}}-\frac{2}{3} \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}}\right) \\
& =\operatorname{tr}\left(\boldsymbol{A}_{-} \wedge \boldsymbol{F}_{+}+\frac{1}{6} \boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-}\right)
\end{aligned}
$$

where $A_{ \pm}=A \pm \tilde{A}, \quad \boldsymbol{F}_{+}=d \boldsymbol{A}_{+}+\frac{1}{2} \boldsymbol{A}_{+} \wedge \boldsymbol{A}_{+}$.

- Also the covariant derivative on a scalar field is:

$$
D_{\mu} X=\partial_{\mu} X-\boldsymbol{A}_{\mu} X+X \tilde{\boldsymbol{A}}_{\mu}
$$

- Let's give a quick derivation of this novel Higgs mechanism, first for $k=1$:

$$
\begin{aligned}
L_{C S} & =\operatorname{tr}\left(\boldsymbol{A} \wedge d \boldsymbol{A}+\frac{2}{3} \boldsymbol{A} \wedge \boldsymbol{A} \wedge \boldsymbol{A}-\tilde{\boldsymbol{A}} \wedge d \tilde{\boldsymbol{A}}-\frac{2}{3} \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}}\right) \\
& =\operatorname{tr}\left(\boldsymbol{A}_{-} \wedge \boldsymbol{F}_{+}+\frac{1}{6} \boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-}\right)
\end{aligned}
$$

where $A_{ \pm}=\boldsymbol{A} \pm \tilde{\boldsymbol{A}}, \quad \boldsymbol{F}_{+}=d \boldsymbol{A}_{+}+\frac{1}{2} \boldsymbol{A}_{+} \wedge \boldsymbol{A}_{+}$.

- Also the covariant derivative on a scalar field is:

$$
D_{\mu} X=\partial_{\mu} X-\boldsymbol{A}_{\mu} X+X \tilde{\boldsymbol{A}}_{\mu}
$$

- If $\langle X\rangle=v 1$ then:

$$
-\left(D_{\mu} X\right)^{2} \sim-v^{2}\left(\boldsymbol{A}_{-}\right)_{\mu}\left(\boldsymbol{A}_{-}\right)^{\mu}+\cdots
$$

- Let's give a quick derivation of this novel Higgs mechanism, first for $k=1$:

$$
\begin{aligned}
L_{C S} & =\operatorname{tr}\left(\boldsymbol{A} \wedge d \boldsymbol{A}+\frac{2}{3} \boldsymbol{A} \wedge \boldsymbol{A} \wedge \boldsymbol{A}-\tilde{\boldsymbol{A}} \wedge d \tilde{\boldsymbol{A}}-\frac{2}{3} \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}} \wedge \tilde{\boldsymbol{A}}\right) \\
& =\operatorname{tr}\left(\boldsymbol{A}_{-} \wedge \boldsymbol{F}_{+}+\frac{1}{6} \boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-} \wedge \boldsymbol{A}_{-}\right)
\end{aligned}
$$

where $\boldsymbol{A}_{ \pm}=\boldsymbol{A} \pm \tilde{\boldsymbol{A}}, \quad \boldsymbol{F}_{+}=d \boldsymbol{A}_{+}+\frac{1}{2} \boldsymbol{A}_{+} \wedge \boldsymbol{A}_{+}$.

- Also the covariant derivative on a scalar field is:

$$
D_{\mu} X=\partial_{\mu} X-\boldsymbol{A}_{\mu} X+X \tilde{\boldsymbol{A}}_{\mu}
$$

- If $\langle X\rangle=v 1$ then:

$$
-\left(D_{\mu} X\right)^{2} \sim-v^{2}\left(\boldsymbol{A}_{-}\right)_{\mu}\left(\boldsymbol{A}_{-}\right)^{\mu}+\cdots
$$

- Thus, \boldsymbol{A}_{-}is massive - but not dynamical. Integrating it out gives us:

$$
-\frac{1}{4 v^{2}}\left(\boldsymbol{F}_{+}\right)_{\mu \nu}\left(\boldsymbol{F}_{+}\right)^{\mu \nu}+\mathcal{O}\left(\frac{1}{v^{3}}\right)
$$

so A_{+}becomes dynamical.

- One can check that the bi-fundamental X^{I} reduces to an adjoint under \boldsymbol{A}_{+}. The rest of $\mathcal{N}=8$ SYM assembles itself correctly.
- One can check that the bi-fundamental X^{I} reduces to an adjoint under \boldsymbol{A}_{+}. The rest of $\mathcal{N}=8 \mathrm{SYM}$ assembles itself correctly.
- But how should we physically interpret this?

$$
\left.L_{C S}^{G \times G}\right|_{\text {vev } v}=\frac{1}{v^{2}} L_{S Y M}^{G}+\mathcal{O}\left(\frac{1}{v^{3}}\right)
$$

- One can check that the bi-fundamental X^{I} reduces to an adjoint under \boldsymbol{A}_{+}. The rest of $\mathcal{N}=8$ SYM assembles itself correctly.
- But how should we physically interpret this?

$$
\left.L_{C S}^{G \times G}\right|_{v e v v}=\frac{1}{v^{2}} L_{S Y M}^{G}+\mathcal{O}\left(\frac{1}{v^{3}}\right)
$$

- It seems like the $M 2$ is becoming a $D 2$ with YM coupling v.
- One can check that the bi-fundamental X^{I} reduces to an adjoint under \boldsymbol{A}_{+}. The rest of $\mathcal{N}=8 \mathrm{SYM}$ assembles itself correctly.
- But how should we physically interpret this?

$$
\left.L_{C S}^{G \times G}\right|_{\text {vev } v}=\frac{1}{v^{2}} L_{S Y M}^{G}+\mathcal{O}\left(\frac{1}{v^{3}}\right)
$$

- It seems like the $M 2$ is becoming a $D 2$ with YM coupling v.
- Have we somehow compactified the theory? No.
- One can check that the bi-fundamental X^{I} reduces to an adjoint under \boldsymbol{A}_{+}. The rest of $\mathcal{N}=8 \mathrm{SYM}$ assembles itself correctly.
- But how should we physically interpret this?

$$
\left.L_{C S}^{G \times G}\right|_{\text {vev } v}=\frac{1}{v^{2}} L_{S Y M}^{G}+\mathcal{O}\left(\frac{1}{v^{3}}\right)
$$

- It seems like the $M 2$ is becoming a $D 2$ with YM coupling v.
- Have we somehow compactified the theory? No.
- For any finite v, there are corrections to the SYM. These decouple only as $v \rightarrow \infty$. So at best we can say that:

$$
\left.L_{C S}^{G \times G}\right|_{\text {vev } v \rightarrow \infty}=\lim _{v \rightarrow \infty} \frac{1}{v^{2}} L_{S Y M}^{G}
$$

- One can check that the bi-fundamental X^{I} reduces to an adjoint under \boldsymbol{A}_{+}. The rest of $\mathcal{N}=8 \mathrm{SYM}$ assembles itself correctly.
- But how should we physically interpret this?

$$
\left.L_{C S}^{G \times G}\right|_{\text {vev } v}=\frac{1}{v^{2}} L_{S Y M}^{G}+\mathcal{O}\left(\frac{1}{v^{3}}\right)
$$

- It seems like the $M 2$ is becoming a $D 2$ with YM coupling v.
- Have we somehow compactified the theory? No.
- For any finite v, there are corrections to the SYM. These decouple only as $v \rightarrow \infty$. So at best we can say that:

$$
\left.L_{C S}^{G \times G}\right|_{\text {vev } v \rightarrow \infty}=\lim _{v \rightarrow \infty} \frac{1}{v^{2}} L_{S Y M}^{G}
$$

- The RHS is by definition the theory on M2-branes! So this is more like a "proof" that the original Chern-Simons theory really is the theory on M2-branes.
- However once we introduce the Chern-Simons level k then the analysis is different [Distler-SM-Papageorgakis-van Raamsdonk]:

$$
\left.L_{C S}^{G \times G}\right|_{\text {vev } v}=\frac{k}{v^{2}} L_{S Y M}^{G}+\mathcal{O}\left(\frac{k}{v^{3}}\right)
$$

- However once we introduce the Chern-Simons level k then the analysis is different [Distler-SM-Papageorgakis-van Raamsdonk]:

$$
\left.L_{C S}^{G \times G}\right|_{\text {vev } v}=\frac{k}{v^{2}} L_{S Y M}^{G}+\mathcal{O}\left(\frac{k}{v^{3}}\right)
$$

- If we take $k \rightarrow \infty, v \rightarrow \infty$ with $v^{2} / k=g_{Y M}$ fixed, then in this limit the RHS actually becomes:

$$
\frac{1}{g_{Y M}^{2}} L_{S Y M}^{G}
$$

and this is definitely the Lagrangian for $D 2$ branes at finite coupling.

- However once we introduce the Chern-Simons level k then the analysis is different [Distler-SM-Papageorgakis-van Raamsdonk]:

$$
\left.L_{C S}^{G \times G}\right|_{\text {vev } v}=\frac{k}{v^{2}} L_{S Y M}^{G}+\mathcal{O}\left(\frac{k}{v^{3}}\right)
$$

- If we take $k \rightarrow \infty, v \rightarrow \infty$ with $v^{2} / k=g_{Y M}$ fixed, then in this limit the RHS actually becomes:

$$
\frac{1}{g_{Y M}^{2}} L_{S Y M}^{G}
$$

and this is definitely the Lagrangian for $D 2$ branes at finite coupling.

- So this time we have compactified the theory! How can that be?
- We proposed this should be understood as deconstruction for an orbifold C^{4} / Z_{k} :

- We proposed this should be understood as deconstruction for an orbifold C^{4} / Z_{k} :

- In our paper we observed that the orbifold C^{4} / Z_{k} has $\mathcal{N}=6$ supersymmetry and $S U(4) R$-symmetry. We thought this might be enhanced to $\mathcal{N}=8$ for some unknown reason.
- We proposed this should be understood as deconstruction for an orbifold C^{4} / Z_{k} :

- In our paper we observed that the orbifold C^{4} / Z_{k} has $\mathcal{N}=6$ supersymmetry and $S U(4) R$-symmetry. We thought this might be enhanced to $\mathcal{N}=8$ for some unknown reason.
- Instead, as ABJM found, it's the BLG field theory that needs to be modified to have $\mathcal{N}=6$.
- We proposed this should be understood as deconstruction for an orbifold C^{4} / Z_{k} :

- In our paper we observed that the orbifold C^{4} / Z_{k} has $\mathcal{N}=6$ supersymmetry and $S U(4) R$-symmetry. We thought this might be enhanced to $\mathcal{N}=8$ for some unknown reason.
- Instead, as ABJM found, it's the BLG field theory that needs to be modified to have $\mathcal{N}=6$.
- One lesson we learn is that for large k we are in the regime of weakly coupled string theory.
- We proposed this should be understood as deconstruction for an orbifold C^{4} / Z_{k} :

- In our paper we observed that the orbifold C^{4} / Z_{k} has $\mathcal{N}=6$ supersymmetry and $S U(4) R$-symmetry. We thought this might be enhanced to $\mathcal{N}=8$ for some unknown reason.
- Instead, as ABJM found, it's the BLG field theory that needs to be modified to have $\mathcal{N}=6$.
- One lesson we learn is that for large k we are in the regime of weakly coupled string theory.
- A lot can be done in that regime, but for understanding the basics of M2-branes, that is not where we want to be.

Outline

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Conclusions

Lorentzian 3-algebras

- The Lorentzian 3-algebra theories have the following Lagrangian:

$$
\begin{aligned}
L_{L 3 A}^{(G)}= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}\right. \\
& \left.-\frac{1}{12}\left(X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+X_{+}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+X_{+}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]\right)^{2}\right) \\
& +\left(C^{\mu I}-\partial^{\mu} X_{-}^{I}\right) \partial_{\mu} X_{+}^{I}+L_{\text {gauge fixing }}+L_{\text {fermions }}
\end{aligned}
$$

where

$$
\hat{D}_{\mu} \boldsymbol{X}^{I} \equiv \partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-\boldsymbol{B}_{\mu} X_{+}^{I}
$$

Lorentzian 3-algebras

- The Lorentzian 3-algebra theories have the following Lagrangian:

$$
\begin{aligned}
L_{L 3 A}^{(G)}= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}\right. \\
& \left.-\frac{1}{12}\left(X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+X_{+}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+X_{+}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]\right)^{2}\right) \\
& +\left(C^{\mu I}-\partial^{\mu} X_{-}^{I}\right) \partial_{\mu} X_{+}^{I}+L_{\text {gauge fixing }}+L_{\text {fermions }}
\end{aligned}
$$

where

$$
\hat{D}_{\mu} \boldsymbol{X}^{I} \equiv \partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-\boldsymbol{B}_{\mu} X_{+}^{I}
$$

- These theories have no parameter k.

Lorentzian 3-algebras

- The Lorentzian 3-algebra theories have the following Lagrangian:

$$
\begin{aligned}
L_{L 3 A}^{(G)}= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}\right. \\
& \left.-\frac{1}{12}\left(X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+X_{+}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+X_{+}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]\right)^{2}\right) \\
& +\left(C^{\mu I}-\partial^{\mu} X_{-}^{I}\right) \partial_{\mu} X_{+}^{I}+L_{\text {gauge fixing }}+L_{\text {fermions }}
\end{aligned}
$$

where

$$
\hat{D}_{\mu} \boldsymbol{X}^{I} \equiv \partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-\boldsymbol{B}_{\mu} X_{+}^{I}
$$

- These theories have no parameter k.
- They have $S O(8)$ global symmetry acting on the indices $I, J, K \in 1,2, \cdots, 8$.

Lorentzian 3-algebras

- The Lorentzian 3-algebra theories have the following Lagrangian:

$$
\begin{aligned}
L_{L 3 A}^{(G)}= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}\right. \\
& \left.-\frac{1}{12}\left(X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+X_{+}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+X_{+}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]\right)^{2}\right) \\
& +\left(C^{\mu I}-\partial^{\mu} X_{-}^{I}\right) \partial_{\mu} X_{+}^{I}+L_{\text {gauge fixing }}+L_{\text {fermions }}
\end{aligned}
$$

where

$$
\hat{D}_{\mu} \boldsymbol{X}^{I} \equiv \partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-\boldsymbol{B}_{\mu} X_{+}^{I}
$$

- These theories have no parameter k.
- They have $S O(8)$ global symmetry acting on the indices $I, J, K \in 1,2, \cdots, 8$.
- The equation of motion of the auxiliary gauge field C_{μ}^{I} implies that $X_{+}=$constant.
- Our Higgs mechanism works in these theories, but it works too well! [Ho-Imamura-Matsuo]
- Our Higgs mechanism works in these theories, but it works too well! [Ho-Imamura-Matsuo]
- On giving a vev to the singlet field X_{+}^{I}, say:

$$
\left\langle X_{+}^{8}\right\rangle=v
$$

one finds:

$$
\left.L_{L 3 A}^{(G)}\right|_{\text {vev } v}=\frac{1}{v^{2}} L_{S Y M}^{(G)} \quad(+ \text { no corrections })
$$

- Our Higgs mechanism works in these theories, but it works too well! [Ho-Imamura-Matsuo]
- On giving a vev to the singlet field X_{+}^{I}, say:

$$
\left\langle X_{+}^{8}\right\rangle=v
$$

one finds:

$$
\left.L_{L 3 A}^{(G)}\right|_{\text {vev } v}=\frac{1}{v^{2}} L_{S Y M}^{(G)} \quad(+ \text { no corrections })
$$

- This leads one to suspect that the theory is a re-formulation of SYM.
- Our Higgs mechanism works in these theories, but it works too well! [Ho-Imamura-Matsuo]
- On giving a vev to the singlet field X_{+}^{I}, say:

$$
\left\langle X_{+}^{8}\right\rangle=v
$$

one finds:

$$
\left.L_{L 3 A}^{(G)}\right|_{\text {vev } v}=\frac{1}{v^{2}} L_{S Y M}^{(G)} \quad(+ \text { no corrections })
$$

- This leads one to suspect that the theory is a re-formulation of SYM.
- In fact it can be derived [Ezhuthachan-SM-Papageorgakis] starting from $\mathcal{N}=8$ SYM.
- The procedure involves a non-Abelian (dNS) duality [deWit-Nicolai-Samtleben] on the $(2+1)$ d gauge field.
- The procedure involves a non-Abelian (dNS) duality [deWit-Nicolai-Samtleben] on the $(2+1)$ d gauge field.
- Start with $\mathcal{N}=8$ SYM in (2+1)d. Introducing two new adjoint fields $\boldsymbol{B}_{\mu}, \phi$, the dNS duality transformation is:

$$
-\frac{1}{4 g_{Y M}^{2}} \boldsymbol{F}^{\mu \nu} \boldsymbol{F}_{\mu \nu} \rightarrow \frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2}\left(D_{\mu} \boldsymbol{\phi}-g_{\curlyvee M} \boldsymbol{B}_{\mu}\right)^{2}
$$

Note that D_{μ} is the covariant derivative with respect to the original gauge field \boldsymbol{A}.

- The procedure involves a non-Abelian (dNS) duality [deWit-Nicolai-Samtleben] on the $(2+1)$ d gauge field.
- Start with $\mathcal{N}=8$ SYM in (2+1)d. Introducing two new adjoint fields B_{μ}, ϕ, the dNS duality transformation is:

$$
-\frac{1}{4 g_{Y M}^{2}} \boldsymbol{F}^{\mu \nu} \boldsymbol{F}_{\mu \nu} \rightarrow \frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2}\left(D_{\mu} \boldsymbol{\phi}-g_{\curlyvee M} \boldsymbol{B}_{\mu}\right)^{2}
$$

Note that D_{μ} is the covariant derivative with respect to the original gauge field \boldsymbol{A}.

- In addition to the gauge symmetry G, the new action has a noncompact abelian gauge symmetry:

$$
\delta \boldsymbol{\phi}=g_{\curlyvee M} \boldsymbol{M}, \quad \delta \boldsymbol{B}_{\mu}=D_{\mu} \boldsymbol{M}
$$

where $M(x)$ is an arbitrary matrix in the adjoint of G.

- The procedure involves a non-Abelian (dNS) duality [deWit-Nicolai-Samtleben] on the $(2+1)$ d gauge field.
- Start with $\mathcal{N}=8$ SYM in (2+1)d. Introducing two new adjoint fields B_{μ}, ϕ, the dNS duality transformation is:

$$
-\frac{1}{4 g_{Y M}^{2}} \boldsymbol{F}^{\mu \nu} \boldsymbol{F}_{\mu \nu} \rightarrow \frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2}\left(D_{\mu} \boldsymbol{\phi}-g_{\curlyvee M} \boldsymbol{B}_{\mu}\right)^{2}
$$

Note that D_{μ} is the covariant derivative with respect to the original gauge field A.

- In addition to the gauge symmetry G, the new action has a noncompact abelian gauge symmetry:

$$
\delta \boldsymbol{\phi}=g_{\curlyvee M} \boldsymbol{M}, \quad \delta \boldsymbol{B}_{\mu}=D_{\mu} \boldsymbol{M}
$$

where $M(x)$ is an arbitrary matrix in the adjoint of G.

- To prove the duality, use this symmetry to set $\phi=0$. Then integrating out B_{μ} gives the usual YM kinetic term for $\boldsymbol{F}_{\mu \nu}$.
- The dNS-duality transformed $\mathcal{N}=8$ SYM is:

$$
\begin{aligned}
L= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2}\left(D_{\mu} \boldsymbol{\phi}-g_{Y M} \boldsymbol{B}_{\mu}\right)^{2}\right. \\
& \left.-\frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i}-\frac{g_{Y M}^{2}}{4}\left[\boldsymbol{X}^{i}, \boldsymbol{X}^{j}\right]^{2}+\text { fermions }\right)
\end{aligned}
$$

- The dNS-duality transformed $\mathcal{N}=8$ SYM is:

$$
\begin{aligned}
L= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2}\left(D_{\mu} \boldsymbol{\phi}-g_{Y M} \boldsymbol{B}_{\mu}\right)^{2}\right. \\
& \left.-\frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i}-\frac{g_{Y M}^{2}}{4}\left[\boldsymbol{X}^{i}, \boldsymbol{X}^{j}\right]^{2}+\text { fermions }\right)
\end{aligned}
$$

- We can now see the $S O(8)$ invariance appearing.
- The dNS-duality transformed $\mathcal{N}=8$ SYM is:

$$
\begin{aligned}
L= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2}\left(D_{\mu} \boldsymbol{\phi}-g_{Y M} \boldsymbol{B}_{\mu}\right)^{2}\right. \\
& \left.-\frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i}-\frac{g_{Y M}^{2}}{4}\left[\boldsymbol{X}^{i}, \boldsymbol{X}^{j}\right]^{2}+\text { fermions }\right)
\end{aligned}
$$

- We can now see the $S O(8)$ invariance appearing.
- Rename $\phi \rightarrow \boldsymbol{X}^{8}$. Then the scalar kinetic terms are:

$$
-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}=-\frac{1}{2}\left(\partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-g_{\curlyvee M}^{I} \boldsymbol{B}_{\mu}\right)^{2}
$$

where $g_{Y M}^{I}=\left(0, \ldots, 0, g_{Y M}\right)$.

- The dNS-duality transformed $\mathcal{N}=8$ SYM is:

$$
\begin{aligned}
L= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2}\left(D_{\mu} \boldsymbol{\phi}-g_{Y M} \boldsymbol{B}_{\mu}\right)^{2}\right. \\
& \left.-\frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i}-\frac{g_{Y M}^{2}}{4}\left[\boldsymbol{X}^{i}, \boldsymbol{X}^{j}\right]^{2}+\text { fermions }\right)
\end{aligned}
$$

- We can now see the $S O(8)$ invariance appearing.
- Rename $\phi \rightarrow \boldsymbol{X}^{8}$. Then the scalar kinetic terms are:

$$
-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}=-\frac{1}{2}\left(\partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-g_{\curlyvee M}^{I} \boldsymbol{B}_{\mu}\right)^{2}
$$

where $g_{Y M}^{I}=\left(0, \ldots, 0, g_{Y M}\right)$.

- Next, we can allow $g_{Y M}^{I}$ to be an arbitrary 8 -vector.
- The action is now $S O(8)$-invariant if we rotate both the fields X^{I} and the coupling-constant vector $g_{Y M}^{I}$:

$$
\begin{aligned}
L= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}\right. \\
& \left.-\frac{1}{12}\left(g_{\curlyvee M}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+g_{\curlyvee M}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+g_{\curlyvee M}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]\right)^{2}\right)
\end{aligned}
$$

- The action is now $S O(8)$-invariant if we rotate both the fields X^{I} and the coupling-constant vector $g_{Y M}^{I}$:

$$
\begin{aligned}
L= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}\right. \\
& \left.-\frac{1}{12}\left(g_{Y M}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+g_{Y M}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+g_{Y M}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]\right)^{2}\right)
\end{aligned}
$$

- This is not yet a symmetry, since it rotates the coupling constant.
- The action is now $S O$ (8)-invariant if we rotate both the fields X^{I} and the coupling-constant vector $g_{Y M}^{I}$:

$$
\begin{aligned}
L= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}\right. \\
& \left.-\frac{1}{12}\left(g_{Y M}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+g_{Y M}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+g_{Y M}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]\right)^{2}\right)
\end{aligned}
$$

- This is not yet a symmetry, since it rotates the coupling constant.
- The final step is to introduce an 8 -vector of new (gauge-singlet) scalars X_{+}^{I} and replace:

$$
g_{Y M}^{I} \rightarrow X_{+}^{I}(x)
$$

- The action is now $S O(8)$-invariant if we rotate both the fields X^{I} and the coupling-constant vector $g_{Y M}^{I}$:

$$
\begin{aligned}
L= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I}\right. \\
& \left.-\frac{1}{12}\left(g_{Y M}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+g_{Y M}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+g_{Y M}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]\right)^{2}\right)
\end{aligned}
$$

- This is not yet a symmetry, since it rotates the coupling constant.
- The final step is to introduce an 8 -vector of new (gauge-singlet) scalars X_{+}^{I} and replace:

$$
g_{Y M}^{I} \rightarrow X_{+}^{I}(x)
$$

- This is legitimate if and only if $X_{+}^{I}(x)$ has an equation of motion that renders it constant. Then on-shell we can recover the original theory by writing $\left\langle X_{+}^{I}\right\rangle=g_{Y M}^{I}$.
- Constancy of X_{+}^{I} is imposed by introducing a new set of abelian gauge fields and scalars: C_{μ}^{I}, X_{-}^{I} and adding the following term:

$$
L_{C}=\left(C_{I}^{\mu}-\partial X_{-}^{I}\right) \partial_{\mu} X_{+}^{I}
$$

- Constancy of X_{+}^{I} is imposed by introducing a new set of abelian gauge fields and scalars: C_{μ}^{I}, X_{-}^{I} and adding the following term:

$$
L_{C}=\left(C_{I}^{\mu}-\partial X_{-}^{I}\right) \partial_{\mu} X_{+}^{I}
$$

- This has a shift symmetry

$$
\delta X_{-}^{I}=\lambda^{I}, \quad \delta C_{\mu}^{I}=\partial_{\mu} \lambda^{I}
$$

which will remove the negative-norm states associated to C_{μ}^{I}.

- Constancy of X_{+}^{I} is imposed by introducing a new set of abelian gauge fields and scalars: C_{μ}^{I}, X_{-}^{I} and adding the following term:

$$
L_{C}=\left(C_{I}^{\mu}-\partial X_{-}^{I}\right) \partial_{\mu} X_{+}^{I}
$$

- This has a shift symmetry

$$
\delta X_{-}^{I}=\lambda^{I}, \quad \delta C_{\mu}^{I}=\partial_{\mu} \lambda^{I}
$$

which will remove the negative-norm states associated to C_{μ}^{I}.

- We have thus ended up with the Lorentzian 3-algebra action [Bandres-Lipstein-Schwarz, Gomis-Rodriguez-Gomez-van Raamsdonk-Verlinde]:

$$
\begin{aligned}
L= & \operatorname{tr}\left(\frac{1}{2} \epsilon^{\mu \nu \lambda} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \lambda}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}_{\mu} \boldsymbol{X}^{I}\right. \\
& \left.-\frac{1}{12}\left(X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+X_{+}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+X_{+}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]\right)^{2}\right) \\
& +\left(C^{\mu I}-\partial^{\mu} X_{-}^{I}\right) \partial_{\mu} X_{+}^{I}+L_{\text {gauge-fixing }}+\mathcal{L}_{\text {fermions }}
\end{aligned}
$$

- The final action has some remarkable properties.
- The final action has some remarkable properties.
- It has manifest $\mathrm{SO}(8)$ invariance as well as $\mathcal{N}=8$ superconformal invariance.
- The final action has some remarkable properties.
- It has manifest $\mathrm{SO}(8)$ invariance as well as $\mathcal{N}=8$ superconformal invariance.
- However, both are spontaneously broken by giving a vev $\left\langle X_{+}^{I}\right\rangle=g_{Y M}^{I}$ and the theory reduces to $\mathcal{N}=8 \mathrm{SYM}$ with coupling $\left|g_{\text {YM }}\right|$.
- The final action has some remarkable properties.
- It has manifest $\mathrm{SO}(8)$ invariance as well as $\mathcal{N}=8$ superconformal invariance.
- However, both are spontaneously broken by giving a vev $\left\langle X_{+}^{I}\right\rangle=g_{Y M}^{I}$ and the theory reduces to $\mathcal{N}=8 \mathrm{SYM}$ with coupling $\left|g_{Y M}\right|$.
- It will certainly describe M2-branes if one can find a way to take $\left\langle X_{+}^{I}\right\rangle=\infty$. That has not yet been done.

Outline

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Conclusions

Higher-order corrections for Lorentzian 3-algebras

- One might ask if the non-Abelian duality that we have just performed works when higher order (in α^{\prime}) corrections are included.

Higher-order corrections for Lorentzian 3-algebras

- One might ask if the non-Abelian duality that we have just performed works when higher order (in α^{\prime}) corrections are included.
- For the Abelian case [Duff, Townsend, Schmidhuber] we know that the analogous duality works for the entire DBI action and that fermions and supersymmetry can also be incorporated [Aganagic-Park-Popescu-Schwarz].

Higher-order corrections for Lorentzian 3-algebras

- One might ask if the non-Abelian duality that we have just performed works when higher order (in α^{\prime}) corrections are included.
- For the Abelian case [Duff, Townsend, Schmidhuber] we know that the analogous duality works for the entire DBI action and that fermions and supersymmetry can also be incorporated [Aganagic-Park-Popescu-Schwarz].
- Recently we have shown [Alishahiha-SM] that to lowest nontrivial order (F^{4}-type corrections) one can indeed dualise the non-Abelian SYM into an $S O(8)$-invariant form.

Higher-order corrections for Lorentzian 3-algebras

- One might ask if the non-Abelian duality that we have just performed works when higher order (in α^{\prime}) corrections are included.
- For the Abelian case [Duff, Townsend, Schmidhuber] we know that the analogous duality works for the entire DBI action and that fermions and supersymmetry can also be incorporated [Aganagic-Park-Popescu-Schwarz].
- Recently we have shown [Alishahiha-SM] that to lowest nontrivial order (F^{4}-type corrections) one can indeed dualise the non-Abelian SYM into an $S O$ (8)-invariant form.
- Here of course one cannot do all orders in α^{\prime} because a non-Abelian analogue of DBI is still not known.

Higher-order corrections for Lorentzian 3-algebras

- One might ask if the non-Abelian duality that we have just performed works when higher order (in α^{\prime}) corrections are included.
- For the Abelian case [Duff, Townsend, Schmidhuber] we know that the analogous duality works for the entire DBI action and that fermions and supersymmetry can also be incorporated [Aganagic-Park-Popescu-Schwarz].
- Recently we have shown [Alishahiha-SM] that to lowest nontrivial order (F^{4}-type corrections) one can indeed dualise the non-Abelian SYM into an $S O(8)$-invariant form.
- Here of course one cannot do all orders in α^{\prime} because a non-Abelian analogue of DBI is still not known.
- However our approach may have a bearing on that unsolved problem.
- Let us see how this works. In $(2+1)$ d, the lowest correction to SYM for D2-branes is the sum of the following contributions (here $\boldsymbol{X}^{i j}=\left[\boldsymbol{X}^{i}, \boldsymbol{X}^{j}\right]$):

$$
\begin{aligned}
L_{1}^{(4)}= & \frac{1}{12 g_{Y M}^{4}}\left[\boldsymbol{F}_{\mu \nu} \boldsymbol{F}_{\rho \sigma} \boldsymbol{F}^{\mu \rho} \boldsymbol{F}^{\nu \sigma}+\frac{1}{2} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\nu \rho} \boldsymbol{F}_{\rho \sigma} \boldsymbol{F}^{\sigma \mu}\right. \\
& \left.-\frac{1}{4} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu} \boldsymbol{F}_{\rho \sigma} \boldsymbol{F}^{\rho \sigma}-\frac{1}{8} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}_{\rho \sigma} \boldsymbol{F}^{\mu \nu} \boldsymbol{F}^{\rho \sigma}\right] \\
L_{2}^{(4)}= & \frac{1}{12 g_{Y M}^{2}}\left[\boldsymbol{F}_{\mu \nu} D^{\mu} \boldsymbol{X}^{i} \boldsymbol{F}^{\rho \nu} D_{\rho} \boldsymbol{X}^{i}+\boldsymbol{F}_{\mu \nu} D_{\rho} \boldsymbol{X}^{i} \boldsymbol{F}^{\mu \rho} D^{\nu} \boldsymbol{X}^{i}\right. \\
& -2 \boldsymbol{F}_{\mu \rho} \boldsymbol{F}^{\rho \nu} D^{\mu} \boldsymbol{X}^{i} D_{\nu} \boldsymbol{X}^{i}-2 \boldsymbol{F}_{\mu \rho} \boldsymbol{F}^{\rho \nu} D_{\nu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i} \\
& \left.-\boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu} D^{\rho} \boldsymbol{X}^{i} D_{\rho} \boldsymbol{X}^{i}-\frac{1}{2} \boldsymbol{F}_{\mu \nu} D_{\rho} \boldsymbol{X}_{i} \boldsymbol{F}_{\mu \nu} D_{\rho} \boldsymbol{X}_{i}\right] \\
& -\frac{1}{12}\left(\frac{1}{2} \boldsymbol{F}_{\mu \nu} \boldsymbol{F}^{\mu \nu} \boldsymbol{X}^{i j} \boldsymbol{X}^{i j}+\frac{1}{4} \boldsymbol{F}_{\mu \nu} \boldsymbol{X}^{i j} \boldsymbol{F}^{\mu \nu} \boldsymbol{X}^{i j}\right)
\end{aligned}
$$

$$
L_{3}^{(4)}=-\frac{1}{6}\left(D^{\mu} \boldsymbol{X}^{i} D^{\nu} \boldsymbol{X}^{j} \boldsymbol{F}_{\mu \nu}+D^{\nu} \boldsymbol{X}^{j} \boldsymbol{F}_{\mu \nu} D^{\mu} \boldsymbol{X}^{i}\right.
$$

$$
\left.+\boldsymbol{F}_{\mu \nu} D^{\mu} \boldsymbol{X}^{i} D^{\nu} \boldsymbol{X}^{j}\right) \boldsymbol{X}^{i j}
$$

$$
\begin{aligned}
& L_{4}^{(4)}= \frac{1}{12}\left[D_{\mu} \boldsymbol{X}^{i} D_{\nu} \boldsymbol{X}^{j} D^{\nu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{j}+D_{\mu} \boldsymbol{X}^{i} D_{\nu} \boldsymbol{X}^{j} D^{\mu} \boldsymbol{X}^{j} D^{\nu} \boldsymbol{X}^{i}\right. \\
&+D_{\mu} \boldsymbol{X}^{i} D_{\nu} \boldsymbol{X}^{i} D^{\nu} \boldsymbol{X}^{j} D^{\mu} \boldsymbol{X}^{j}-D_{\mu} \boldsymbol{X}^{i} D^{\mu} \boldsymbol{X}^{i} D_{\nu} \boldsymbol{X}^{j} D^{\nu} \boldsymbol{X}^{j} \\
&\left.-\frac{1}{2} D_{\mu} \boldsymbol{X}^{i} D_{\nu} \boldsymbol{X}^{j} D^{\mu} \boldsymbol{X}^{i} D^{\nu} \boldsymbol{X}^{j}\right] \\
& L_{5}^{(4)}=\frac{g_{Y M}^{2}}{12}\left[\boldsymbol{X}^{k j} D_{\mu} \boldsymbol{X}^{k} \boldsymbol{X}^{i j} D^{\mu} \boldsymbol{X}^{i}+\boldsymbol{X}^{i j} D_{\mu} \boldsymbol{X}^{k} \boldsymbol{X}^{i k} D^{\mu} \boldsymbol{X}^{j}\right. \\
&-2 \boldsymbol{X}^{k j} \boldsymbol{X}^{i k} D_{\mu} \boldsymbol{X}^{j} D^{\mu} \boldsymbol{X}^{i}-2 \boldsymbol{X}^{k i} \boldsymbol{X}^{j k} D_{\mu} \boldsymbol{X}^{j} D^{\mu} \boldsymbol{X}^{i} \\
&\left.-\boldsymbol{X}^{i j} \boldsymbol{X}^{i j} D_{\mu} \boldsymbol{X}^{k} D^{\mu} \boldsymbol{X}^{k}-\frac{1}{2} \boldsymbol{X}^{i j} D_{\mu} \boldsymbol{X}^{k} \boldsymbol{X}^{i j} D^{\mu} \boldsymbol{X}^{k}\right] \\
& L_{6}^{(4)}=\frac{g_{Y M}^{4}}{12}\left[\boldsymbol{X}^{i j} \boldsymbol{X}^{k l} \boldsymbol{X}^{i k} \boldsymbol{X}^{j l}+\frac{1}{2} \boldsymbol{X}^{i j} \boldsymbol{X}^{j k} \boldsymbol{X}^{k l} \boldsymbol{X}^{l i}\right. \\
&\left.-\frac{1}{4} \boldsymbol{X}^{i j} \boldsymbol{X}^{i j} \boldsymbol{X}^{k l} \boldsymbol{X}^{k l}-\frac{1}{8} \boldsymbol{X}^{i j} \boldsymbol{X}^{k l} \boldsymbol{X}^{i j} \boldsymbol{X}^{k l}\right]
\end{aligned}
$$

- We have been able to show that this is dual, under the dNS transformation, to:

$$
\left.\begin{array}{rl}
L= & \operatorname{tr}
\end{array}\right] \frac{1}{2} \epsilon^{\mu \nu \rho} \boldsymbol{B}_{\mu} \boldsymbol{F}_{\nu \rho}-\frac{1}{2} \hat{D}_{\mu} \boldsymbol{X}^{I} \hat{D}^{\mu} \boldsymbol{X}^{I} .
$$

- In the previous expression,

$$
\begin{aligned}
\hat{D}_{\mu} \boldsymbol{X}^{I} & =\partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-\boldsymbol{B}_{\mu} X_{+}^{I} \\
\boldsymbol{X}^{I J K} & =X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+X_{+}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+X_{+}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]
\end{aligned}
$$

- In the previous expression,

$$
\begin{aligned}
\hat{D}_{\mu} \boldsymbol{X}^{I} & =\partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-\boldsymbol{B}_{\mu} X_{+}^{I} \\
\boldsymbol{X}^{I J K} & =X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+X_{+}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+X_{+}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]
\end{aligned}
$$

- Here $V(X)$ is the potential:

$$
\begin{aligned}
V(X)= & \frac{1}{12} \boldsymbol{X}^{I J K} \boldsymbol{X}^{I J K}+\frac{1}{108}\left[\boldsymbol{X}^{N I J} \boldsymbol{X}^{N K L} \boldsymbol{X}^{M I K} \boldsymbol{X}^{M J L}\right. \\
& +\frac{1}{2} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M J K} \boldsymbol{X}^{N K L} \boldsymbol{X}^{M L I} \\
& -\frac{1}{4} \boldsymbol{X}^{N I J} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M K L} \boldsymbol{X}^{M K L} \\
& \left.-\frac{1}{8} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M K L} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M K L}\right]
\end{aligned}
$$

- In the previous expression,

$$
\begin{aligned}
\hat{D}_{\mu} \boldsymbol{X}^{I} & =\partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-\boldsymbol{B}_{\mu} X_{+}^{I} \\
\boldsymbol{X}^{I J K} & =X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+X_{+}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+X_{+}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]
\end{aligned}
$$

- Here $V(X)$ is the potential:

$$
\begin{aligned}
V(X)= & \frac{1}{12} \boldsymbol{X}^{I J K} \boldsymbol{X}^{I J K}+\frac{1}{108}\left[\boldsymbol{X}^{N I J} \boldsymbol{X}^{N K L} \boldsymbol{X}^{M I K} \boldsymbol{X}^{M J L}\right. \\
& +\frac{1}{2} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M J K} \boldsymbol{X}^{N K L} \boldsymbol{X}^{M L I} \\
& -\frac{1}{4} \boldsymbol{X}^{N I J} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M K L} \boldsymbol{X}^{M K L} \\
& \left.-\frac{1}{8} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M K L} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M K L}\right]
\end{aligned}
$$

- We see that the dual Lagrangian is $S O(8)$ invariant.
- In the previous expression,

$$
\begin{aligned}
\hat{D}_{\mu} \boldsymbol{X}^{I} & =\partial_{\mu} \boldsymbol{X}^{I}-\left[\boldsymbol{A}_{\mu}, \boldsymbol{X}^{I}\right]-\boldsymbol{B}_{\mu} X_{+}^{I} \\
\boldsymbol{X}^{I J K} & =X_{+}^{I}\left[\boldsymbol{X}^{J}, \boldsymbol{X}^{K}\right]+X_{+}^{J}\left[\boldsymbol{X}^{K}, \boldsymbol{X}^{I}\right]+X_{+}^{K}\left[\boldsymbol{X}^{I}, \boldsymbol{X}^{J}\right]
\end{aligned}
$$

- Here $V(X)$ is the potential:

$$
\begin{aligned}
V(X)= & \frac{1}{12} \boldsymbol{X}^{I J K} \boldsymbol{X}^{I J K}+\frac{1}{108}\left[\boldsymbol{X}^{N I J} \boldsymbol{X}^{N K L} \boldsymbol{X}^{M I K} \boldsymbol{X}^{M J L}\right. \\
& +\frac{1}{2} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M J K} \boldsymbol{X}^{N K L} \boldsymbol{X}^{M L I} \\
& -\frac{1}{4} \boldsymbol{X}^{N I J} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M K L} \boldsymbol{X}^{M K L} \\
& \left.-\frac{1}{8} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M K L} \boldsymbol{X}^{N I J} \boldsymbol{X}^{M K L}\right]
\end{aligned}
$$

- We see that the dual Lagrangian is $S O(8)$ invariant.
- It's worth noting that this depends crucially on the relative coefficients of various terms in the original Lagrangian.
- We see from this that the 3-algebra structure remains intact when higher-derivative corrections are taken into account.
- We see from this that the 3-algebra structure remains intact when higher-derivative corrections are taken into account.
- We conjecture that $\mathrm{SO}(8)$ enhancement holds to all orders in α^{\prime}.
- We see from this that the 3-algebra structure remains intact when higher-derivative corrections are taken into account.
- We conjecture that $\mathrm{SO}(8)$ enhancement holds to all orders in α^{\prime}.
- Unfortunately the all-orders corrections are not known for SYM, so we don't have a starting point from which to check this.

Outline

Motivation and background

The Higgs mechanism

Lorentzian 3-algebras

Higher-order corrections for Lorentzian 3-algebras

Conclusions

Summary

- Much progress has been made towards finding the multiple membrane field theory representing the IR fixed point of $\mathcal{N}=8$ SYM.

Summary

- Much progress has been made towards finding the multiple membrane field theory representing the IR fixed point of $\mathcal{N}=8$ SYM.
- But we don't seem to be there yet.

Summary

- Much progress has been made towards finding the multiple membrane field theory representing the IR fixed point of $\mathcal{N}=8$ SYM.
- But we don't seem to be there yet.
- The existence of a large-order orbifold (deconstruction) limit provides a way (the only one so far) to relate the membrane theory to $D 2$-branes. One would like to understand compactification of transverse or longitudinal directions, as we do for D-branes.

Summary

- Much progress has been made towards finding the multiple membrane field theory representing the IR fixed point of $\mathcal{N}=8$ SYM.
- But we don't seem to be there yet.
- The existence of a large-order orbifold (deconstruction) limit provides a way (the only one so far) to relate the membrane theory to $D 2$-branes. One would like to understand compactification of transverse or longitudinal directions, as we do for D-branes.
- An interesting mechanism has been identified to dualise the $D 2$-brane action into a superconformal, $S O(8)$ invariant one. The result is a Lorentzian 3-algebra and this structure is preserved by α^{\prime} corrections.
- A detailed understanding of multiple membranes should open a new window to M-theory and 11 dimensions.
- A detailed understanding of multiple membranes should open a new window to M-theory and 11 dimensions.
...if you were as tiny as a graviton
You could enter these dimensions and go wandering on

And they'd find you...

