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Topological strings on CYs

 In terms of complexity:

Noncritical strings <  Topological strings  < Superstrings

Still, highly nontrivial! For the A model on a CY, TS amplitudes 
encode an enormous amount of geometric information: 
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Goals

Example: noncritical strings solved in terms of matrix models/
integrable systems

“Compute it all at once and algebraically” [Kontsevich]

For TS on generic CY threefolds we use instead mirror symmetry 
and the type B model. This computes “algebraically” and all at 

once in degree  -but not in genus! Very effective for genus zero 
and disk invariants, where the algebraic solution is encoded by 

Picard-Fuchs equations 
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Mirror symmetry at higher genus

The generalization of mirror symmetry/B model to higher genus 

involves the famous holomorphic anomaly equations. These tell 

us that the TS amplitudes are not holomorphic in the moduli:

∂t̄Fg,h(t, t̄) = functional of Fg′<g,h′≤h

[BCOV (closed),  Walcher (open global), Eynard-MM-Orantin (open local), Bonelli-Tanzini, ... ]

 The anomaly equations give a powerful computational tool but in 

general they are not conclusive due to lack of boundary conditions 

(holomorphic ambiguity). These are provided in some cases: gap 

conditions of [Huang-Klemm] (cf. talk by Klemm at Strings07).  

Other strategies? 
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Matrix models and Dijkgraaf-Vafa 
In 2002, D&V found a description of type B TS on certain CY backgrounds in 

terms of large N matrix models

Moral: the “algebraic” approach of B model/mirror symmetry can be 
reformulated and generalized to higher genus in terms of matrix models. 

Enough (and great!) for engineering SUSY theories, but these backgrounds are 
very special (for example, they have no mirrors)
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Toric backgrounds

• Rich enumerative content 
• Nontrivial moduli spaces (orbifold points)
• Large N gauge theory duals (Chern-Simons)
• Engineering of N=2 gauge theories
• Mirror manifolds encoded by algebraic curves 

What about other backgrounds? Specially interesting are 
toric CY manifolds:
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Remodeling the B model I

Given any algebraic curve one can define, through explicit 
residue formulae, amplitudesFg,h(t, p1, · · · , ph), Fg(t)
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If the curve is the spectral curve of a MM, these amplitudes solve 
the loop equations and give the full, explicit 1/N expansion

Example: F0,2(p1, p2) = B(p1, p2) Bergmann kernel
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Remodeling the B model II

Note 1:  This is of course true for the CY backgrounds considered by D&V

Motivation: the residue amplitudes can also be obtained from a 
chiral boson on the curve [ADKMV, M.M.,D&V], which is the Kodaira-

Spencer theory (=string field theory of the B model) in the 
noncompact CY case. 

Conjecture [M.M., BKMP]: the TS amplitudes of the B model are 
given, for all g,h, by the matrix model-like, residue amplitudes 

on the mirror curve

Consider now the B model on the mirror of a toric CY threefold 
+ toric D-branes

Note 2:  We don’t need an explicit matrix model realization: knowledge of the 
algebraic (mirror) curve is enough to compute all perturbative amplitudes.
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Application/test I

We get a general mirror “theorem” for all toric CYs and all 
open and closed topological string amplitudes: we count 

worldsheet instantons by expanding at large radius
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In particular, we deduce that these amplitudes satisfy recursion 
relations modeled on loop equations. This can be even applied to very 
classical enumerative objects, like Hurwitz numbers (which can be 

obtained from special limits of toric backgrounds [Bouchard-M.M.])

F0,2(t, p1, p2) =
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Application/test II
α
′Open TS amplitudes exact in    and the open moduli (previously 

unavailable). We can then probe small distances in toric CYs with 
background D-branes, for example compute correlators at orbifold points 

involving twist fields+boundary preserving operators [BKMP 08] 

This generalizes [ABK] and can be tested against explicit calculations of open 

orbifold GW invariants! [Cavalieri]
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Application/test III

CY background large N CS dual
orbifold point perturbative gauge theory

open TS amplitudes Wilson loop vevs

Explicit strong/weak ‘t Hooft coupling interpolation with nontrivial 
modular properties
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Nonperturbative effects in matrix models

The partition function of a MM has nonperturbative corrections: 
eigenvalue tunneling / sum over all filling fractions

N − !
!

These effects have been much studied in the double-scaling limit, 
where they become spacetime instantons of noncritical strings due to ZZ 
branes. We studied them in the full matrix model in [M.M.-Schiappa-Weiss, 

M.M]. In particular they can be computed using the spectral curve only.

C: non-perturbative ambiguity; corresponds to a choice of contour in 

the matrix integral and plays the role of a theta angle [David]

Z(t, gs) = Zp(t, gs) +
∑
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N
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Nonperturbative effects and topological strings I

Since we have a MM-like description of topological strings in terms of a 
spectral (mirror) curve, we can explicitly compute nonperturbative 

effects of this type in some toric backgrounds. They should correspond 
to generalizations of ZZ branes to toric CYs

These effects are testable through the 
connection instantons/large order behavior:

      nontrivial information on
the analytic structure 

of              as a function of  
i.e. singularities in the Borel 

plane 
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Nonperturbative effects and topological strings II

We have computed the 
perturbative amplitudes and 
the nonperturbative effects 
for topological strings on 
                               and its 
limit              (closely 
related to chiral 2d  YM). 
One can do a precision test 
of the instanton/large order 
connection
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From the point of view of type II string, these instanton 
effects correspond to domain walls [as already pointed out in D&V]
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In general, the TS partition function corresponds to a fixed, generic filling 
fraction of the matrix model (a fixed instanton background). In models with 

large N CS duals, this corresponds to expanding around a gauge theory 
instanton. 

Large N duals and nonperturbative effects

Is this sum over all backgrounds the natural way to get background 
independent TS partition functions? [cf. Eynard 08]

Therefore, the total partition function of the gauge theory -which is the 
natural nonperturbative object- equals the sum over all instanton sectors of 

the MM and forces us to include these sectors.
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Conclusions and open problems

• Toric case: there is a generalization of special geometry to higher 
genus by using residue calculus on the mirror manifold. Is it 

possible to extend it to the compact case?

• We obtained a precise understanding of nonperturbative effects in 
some toric backgrounds. But we need to develop instanton 

calculus in more general MM/TS theories. Worldsheet 
interpretation of these effects: a “special” D-brane? Type II 

interpretation?

• Large N duals force us to sum over all instanton sectors of MM. 
Can we use this sum to define background independent TS 

partition functions?  
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