
Tadpole Cancellation in the Topological String

Johannes Walcher
ETH Zurich

Strings ’08, CERN

based on: arXiv:0712.2775
arXiv:0705.409, arXiv:0709.2390 (with Andrew Neitzke)

1

Introduction and Motivation

The Topological String is valuable as

(a) a toy model for string dynamics: D-branes, non-perturbative effects,
Open/Closed duality, S-duality, M-theory, . . .

(b) a tool for studying supersymmetric observables in (ordinary) string theory:
(higher-derivative) N = 1, 2 F-terms, string dualities, counting BPS states, . . .
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The Topological String is valuable as

(a) a toy model for string dynamics: D-branes, non-perturbative effects,
Open/Closed duality, S-duality, M-theory, . . .

(b) a tool for studying supersymmetric observables in (ordinary) string theory:
(higher-derivative) N = 1, 2 F-terms, string dualities, counting BPS states, . . .

Most interesting connections arise when the target space is a Calabi-Yau threefold,
and by combining A- and B-model through Mirror Symmetry.

A-model: Kähler structure
B-model: complex structure

This talk is concerned with topological string on compact Calabi-Yau threefolds
with D-branes and orientifolds.
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Main Line of Investigation

The most celebrated consistency condition of string theory is anomaly cancellation
in 10-d type I (and heterotic) string, discovered by Green and Schwarz in 1984.
Upon compactification, this is more usefully phrased as tadpole cancellation, the
vanishing of one-point functions of unphysical Ramond-Ramond (topform)
potentials:
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Main Results

1. Yes, there is a topological string analogue of tadpole cancellation: In the
presence of background D-branes, only selected amplitudes are well-defined within
one topological string model. Certain one-point functions have to vanish for
decoupling of Kähler and complex structure moduli in loop amplitude
computations.
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Main Results

1. Yes, there is a topological string analogue of tadpole cancellation: In the
presence of background D-branes, only selected amplitudes are well-defined within
one topological string model. Certain one-point functions have to vanish for
decoupling of Kähler and complex structure moduli in loop amplitude
computations.
Spacetime interpretation: F-terms in N = 1 compactifications in general mix
moduli from (N = 2) vector- and hypermultiplets.

2. Tadpoles created by background D-branes can be cancelled using anti-branes or
orientifolds. In the superstring, supersymmetry requires the use of orientifolds.
Somewhat surprisingly, it is also best to cancel tadpoles using orientifolds in
the topological string, even without supersymmetry.
Spacetime interpretation: Topological amplitudes admit BPS interpretation only in
orientifold case. Explanation from say supergravity is so far missing.
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Original Motivation

In this millenium, the open-closed topological string has been solved by Vafa and
collaborators in several cases of non-compact Calabi-Yau manifolds.
Two classes:

• Toric Calabi-Yau solved by topological vertex (Aganagic, Klemm, Mariño,
Vafa)
• Certain “conifold-like” Calabi-Yau manifolds related to matrix models
according to Dijkgraaf-Vafa conjecture (See M. Mariño’s talk).

→ Open-closed duality plays a fundamental role.
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Original Motivation

In this millenium, the open-closed topological string has been solved by Vafa and
collaborators in several cases of non-compact Calabi-Yau manifolds.
Two classes:

• Toric Calabi-Yau solved by topological vertex (Aganagic, Klemm, Mariño,
Vafa)
• Certain “conifold-like” Calabi-Yau manifolds related to matrix models
according to Dijkgraaf-Vafa conjecture (See M. Mariño’s talk).

→ Open-closed duality plays a fundamental role.

Would like to solve the following important

Problem: Compute loop amplitudes in topological string on genuine compact
Calabi-Yau manifolds. Understand role of open-closed duality. Extract general
lessons for string theory.
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I. Tadpole Cancellation in the Topological String
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I. Tadpole Cancellation in the Topological String

Recall definition of topological string (Witten 1988).

• Start from unitary N = (2, 2) superconformal field theory of central charge
ĉ = 3, for example obtained from sigma-model on Calabi-Yau threefold.

• Identify generators of (topologically twisted) superconformal algebra with BRST
operator and anti-ghost of “bosonic string” in which ghost and matter do not
decouple. For example, in “B-model”

(Q, Q̄) ↔ (G+, Ḡ+)
(b0, b̄0) ↔ (G−, Ḡ−)
(bc, b̄c̄) ↔ (J, J̄)

• Define topological string amplitudes by integrating over moduli space of
Riemann surfaces

F (g) =
∫

M(g)
〈|

3g−3∏

a=1

(G−, µa)|2〉

6

Four Different Topological Models

Q b0 moduli

A-model G+ + Ḡ− G− + Ḡ+ Kähler t

anti A-model G− + Ḡ+ G+ + Ḡ− t̄

B-model G+ + Ḡ+ G− + Ḡ− Complex structure z

anti B-model G− + Ḡ− G+ + Ḡ+ z̄
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Q b0 moduli

A-model G+ + Ḡ− G− + Ḡ+ Kähler t

anti A-model G− + Ḡ+ G+ + Ḡ− t̄

B-model G+ + Ḡ+ G− + Ḡ− Complex structure z

anti B-model G− + Ḡ− G+ + Ḡ+ z̄

Mirror Symmetry relates A-model with B-model (and anti A-model with anti
B-model), in general changing the target space.

In a unitary N = 2 CFT, worldsheet CPT relates A-model with anti A-model, and
B-model with anti B-model. In particular, from the point of view of (say)
B-model, the anti-ghost cohomology (cohomology of BRST operator of anti
B-model) is non-empty.

7

Anomalies

The B-model-BRST trivial states from anti B-model fail to decouple in general.

! Topological amplitudes of the B-model depend on the complex structure
moduli in a non-holomorphic way (BCOV 1993). This is an anomaly and arises
from the boundary of the moduli space of Riemann surfaces.
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Anomalies

The B-model-BRST trivial states from anti B-model fail to decouple in general.

! Topological amplitudes of the B-model depend on the complex structure
moduli in a non-holomorphic way (BCOV 1993). This is an anomaly and arises
from the boundary of the moduli space of Riemann surfaces.

Again from the point of view of B-model, the mixed BRST-anti-ghost
cohomology (cohomology of BRST operator of A-model) is also non-empty. The
marginal operators are precisely the Kähler moduli. BCOV showed in 1993 that
closed string amplitudes do not depend on those “wrong” moduli from the
“other” topological model.

F (g) = F (g)(z, z̄)
∂tF (g) = ∂t̄F (g) = 0

This statement has to be revisited in the presence of background D-branes . . .
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D-branes in Topological String (Witten 1993)

For sigma-model on (three-dimensional, simply-connected) Calabi-Yau:

A-branes: Lagrangian submanifolds with flat bundle

B-branes: Complex submanifolds with holomorphic bundle
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Topological charges of topological branes are naturally carried by the “other”
model. (Ooguri-Oz-Yin, 1996)
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Example: (For simply connected CY) An A-brane is Lagrangian submanifold L,
representing 3-cycle Γ. These naturally couple to three-forms, among which the
complex structure deformations. Topological D-brane charge is measured by:

ch(L) =
∫

Γ
(3-form)

This definition supports the index theorem (cmp, Polchinski, 1995)

TrL,L′(−1)F = 〈ch(L)|ch(L′)〉 = Γ ∩ Γ′

These observations are suggestive of an
Analogy:
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Example: (For simply connected CY) An A-brane is Lagrangian submanifold L,
representing 3-cycle Γ. These naturally couple to three-forms, among which the
complex structure deformations. Topological D-brane charge is measured by:

ch(L) =
∫

Γ
(3-form)

This definition supports the index theorem (cmp, Polchinski, 1995)

TrL,L′(−1)F = 〈ch(L)|ch(L′)〉 = Γ ∩ Γ′

These observations are suggestive of an
Analogy: Mixed BRST-anti-ghost cohomology of topological string ↔ Compact
RR-potentials of superstring compactification

10

Do we have to cancel the tadpoles?
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Why would we have to cancel the tadpoles?

In the topological string, non-vanishing tadpoles are not quite as fatal as in the
superstring. However, the non-trivial dependence of disk one-point functions on
the “other” moduli means that if tadpoles are not cancelled, loop amplitudes will
also depend on those wrong moduli.

Tadpole cancellation in topological string: (J.W. 2007, Cook-Ooguri-Yang
2008, one-loop: Klemm-Vafa (unpub.)) A- and B-model decouple only for
amplitudes with vanishing total D-brane charge.

Two ways to cancel tadpoles:
• Study dependence on open string moduli
∗ Continuous moduli: Operator insertion on boundary
∗ Discrete moduli: brane-anti-brane configuration

• Include orientifolds (preferred)
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II. Extended Holomorphic Anomaly

Holomorphic anomaly only known method to compute systematically topological
string amplitudes for compact Calabi-Yau manifolds.

Strategy:

• Use holomorphic anomaly equation (Bershadsky-Cecotti-Ooguri-Vafa, 1993) and
modular invariance to reduce to a finite-dimensional problem.

• Determine integration constants from physical requirements at singularities in
moduli space (e.g., large volume, conifold, orbifold), or some other duality.

Example: F (g) on the quintic can be computed in this way up to g = 51 loops
(Huang-Klemm-Quackenbush, 2006), to all orders for certain local models
(Eynard-Orantin, Mariño, 2007)

12

BCOV: Anomalous contributions from boundary of moduli space, ∂M(g).

∂̄īF (g) =
1
2

∑

g1+g2=g

Cjk
ī
F (g1)

j F (g2)
k +

1
2
Cjk

ī
F (g−1)

jk ,

kbar kbar

Recursive in perturbative expansion χ = 2g − 2
Determines F (g) up to finite number of constants
Origin: Unitarity of underlying N = (2, 2) worldsheet theory; non-empty
anti-ghost cohomology
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Extension to open/unoriented strings
J.W. (2007)

Recent related work: Mariño et al., Bonelli-Tanzini, Ooguri et al.
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Extension to open/unoriented strings
J.W. (2007)

Recent related work: Mariño et al., Bonelli-Tanzini, Ooguri et al.

Genus g, number of boundary components h, some background D-brane(s)

F (g,h) =
∫

M(g,h)
[dm][dl]

〈3g+h−3∏

a=1

(∫
µaG

−)(∫
µ̄āḠ

−) h∏

b=1

λb(G− + Ḡ−)
〉
Σg,h

Problem: Moduli space M(g,h) is real, has codimension-one boundaries.

Conditions: 1. Tadpole Cancellation
2. F (g,h) do not depend on continuous open string moduli

Then: ∂̄F (g,h) receives additional contributions only from degeneration in which
length of boundary component shrinks to zero.
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kbar kbar

∂̄īF (g,h) = (BCOV)−∆j
ī
F (g,h−1)

j
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kbar kbar

∂̄īF (g,h) = (BCOV)−∆j
ī
F (g,h−1)

j

Tree-level data:

Closed string: Three-point func-
tion on the sphere

Cijk ∼ ∂3F (0) ∼

Open string: Two-point function
on the disk

∆ij ∼ ∂2F (0,1) ∼
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III. Tadpole Cancellation in Topological Orientifolds
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III. Tadpole Cancellation in Topological Orientifolds

Extended holomorphic anomaly equation reaches full potential only under
inclusion of unoriented strings.

Tadpole cancellation necessary for satisfactory BPS interpretation of topological
string (on compact CY). At present, only (compelling) numerical evidence in
examples.
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Digression: Klein surfaces

Open + unoriented Riemann surfaces are classified by genus g, number of
boundary components h and number of crosscaps c. Order of perturbation theory
χ = 2g + h + c− 2. Equivalence 2c ∼ g.

=
=
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Digression: Klein surfaces

Open + unoriented Riemann surfaces are classified by genus g, number of
boundary components h and number of crosscaps c. Order of perturbation theory
χ = 2g + h + c− 2. Equivalence 2c ∼ g.

=
=

Equivalently, can think of doubled surface with involution ! Klein surfaces.
Topological string as before.

Conventions: Orientable surface: F (g,h)

Even number of crosscaps: K(g,h)

Odd number of crosscaps: R(g,h)
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How the various Klein surfaces can degenerate?

∂īR(g,h) ⊃
closed

∑

g1+g2=g
h1+h2=h

Cjk
ī
K(g1,h1)

j R(g2,h2)
k +

∑

g1+g2=g
h1+h2=h

Cjk
ī
F (g1,h1)

j R(g2,h2)
k

+1
2C

jk
ī
R(g−1,h)

jk + 1
2B

jk
ī
R(g−1,h)

jk

Non-orientable Riemann surfaces with an even number of crosscaps, Σ(g,h)k, have
several more possible types of closed string degenerations:

∂īK(g,h) ⊃
closed

∑

g1+g2=g
h1+h2=h

Cjk
ī
K(g1,h1)

j F (g2,h2)
k +

1
2

∑

g1+g2=g−1
h1+h2=h

Cjk
ī
R(g1,h1)

j R(g2,h2)
k

+
1
2

∑

g1+g2=g
h1+h2=h

Cjk
ī
K(g1,h1)

j K(g2,h2)
k +

1
2
Cjk

ī
K(g−1,h)

jk +
1
2
Bjk

ī
K(g−1,h)

jk +
1
2
Bjk

ī
F (g−1,h)

jk

18

Finally, tadpole contribution:

∂ī

(
F (g,h) +R(g,h−1)

)
⊃

tadpole
−
√

2∆j
ī
F (g,h−1)

j

∂ī

(
K(g,h) +R(g,h−1)

)
⊃

tadpole
−
√

2∆j
ī
K(g,h−1)

j

∂ī

(
K(g,h) +R(g−1,h+1)

)
⊃

tadpole
−
√

2∆j
ī
R(g−1,h)

j
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Result: Define total amplitude at order χ in perturbation theory

G(χ) =
1

2
χ
2+1

[
F (gχ) +

∑

2g+h−2=χ

F (g,h) +
∑

2g+h−1=χ

R(g,h) +
∑

2g+h−2=χ

K(g,h)
]

19

Result: Define total amplitude at order χ in perturbation theory

G(χ) =
1

2
χ
2+1

[
F (gχ) +

∑

2g+h−2=χ

F (g,h) +
∑

2g+h−1=χ

R(g,h) +
∑

2g+h−2=χ

K(g,h)
]

This satisfies extended holomorphic anomaly from before (χ > 0, P : orientifold
projection, ∆ now disk+crosscap.)

∂īG(χ) =
1
2

∑

χ1+χ2=χ−2

CP jk
ī G

(χ1)
j G(χ2)

k +
1
2
CP jk

ī G
(χ−2)
jk −∆P j

īG
(χ−1)
j
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BPS interpretation

Topological string amplitudes are related to BPS state counting (Gopakumar-Vafa
1998)

∑

g

λ2g−2 lim
t̄→∞

F (g)(t, t̄) =
∑

g,d,k

n(g)
d

1
k

(
2 sinh

λk

2

)2g−2
qdk
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BPS interpretation

Topological string amplitudes are related to BPS state counting (Gopakumar-Vafa
1998)

∑

g

λ2g−2 lim
t̄→∞

F (g)(t, t̄) =
∑

g,d,k

n(g)
d

1
k

(
2 sinh

λk

2

)2g−2
qdk

• holomorphic limit in A-model. t: Kähler modulus, q ∼ et

• d ∈ H2(X, Z): charge under N = 2 vectormultiplet
• λ: topological string coupling
• g :∼ SU (2)L ⊂ SO(4) 5d spin

• n(g)
d : Integers counting “net” number of M2/D2 BPS states with quantum

numbers d, g.



21

Open/unoriented amplitudes (Ooguri-Vafa 2000, J.W. 2007)

In example (Real Quintic)

∑

χ

λχ
(
G(χ)(t, ε)− 1

2
F (gχ)(t)

)
=

∑

χ,d,k

n(ĝ,real)
g

1
k

(
2 sinh

λk

2

)χ
qkd/2εkd
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cancelled between D-brane and O-plane. Namely, the D-brane configuration is
constrained by the choice of orientifold projection.
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∑

χ

λχ
(
G(χ)(t, ε)− 1

2
F (gχ)(t)

)
=

∑

χ,d,k

n(ĝ,real)
g

1
k

(
2 sinh

λk

2

)χ
qkd/2εkd

• ε : discrete open string modulus (discrete Wilson line on Lagrangian L)
• d ∈ H2(X, L; Z)
• Renormalized string coupling (Sinha-Vafa): G(χ) → 2

χ
2G(χ)

• In examples (quintic, etc.): The n(ĝ,real)
d are integer only if tadpoles are

cancelled between D-brane and O-plane. Namely, the D-brane configuration is
constrained by the choice of orientifold projection.

This statement arises from detailed computations in A- and B-model and is
essentially mathematically rigorous.
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What Real Topological String is Counting?

→ BPS states (solitons)
in 1+1-dimensional theory
on D4-brane wrapped on
L. Carry vectormultiplet
charge, as well as topo-
logical charge asscoiated
with (discrete) open string
moduli.
→ Mathematics: Real
enumerative invari-
ants (Welschinger,
Solomon,. . . )

background D4/O4 on L

L

x3

D2 on disk

D2 on sphere

Gopakumar−Vafa

Ooguri−Vafa

X

23

IV. Relation to Tadpole Cancellation in Superstring
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IV. Relation to Tadpole Cancellation in Superstring

Given a topological string background consisting (in A-model) of Calabi-Yau
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IV. Relation to Tadpole Cancellation in Superstring

Given a topological string background consisting (in A-model) of Calabi-Yau
threefold plus D-branes on Lagrangians and, possibly, orientifolds, there are (at
least) two different ways of embedding into type IIA superstring.

1. D6-branes+O6-planes wrapped on 3-cycles and filling 4d spacetime. Tadpole
cancellation of type IIA requires vanishing total D6-brane charge, where

Q6(O6-plane) = 4

(in covering space units) for D6 and O6 wrapped on the same cycle.

2. D4-branes+O4-planes wrapped on 3-cycle and extended along
1 + 1-dimensional subspace of spacetime (Ooguri-Vafa setup). Since RR-flux can
escape to infinity, there is naively no tadpole cancellation condition. But for the
record, note that

Q4(O4-plane) = 1

24
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To compare with tadpole cancellation in topological string, we first need to know
charge of topological orientifold plane.

Qtop(top. O-plane) = ?

To compute this, we note that from the topological string point of view, the
O-planes of interest are half-dimensional, and the parity twisted Witten index for
D-brane wrapped on L can be computed by geometric intersection with O-plane
cycle ΓO.

TrL,P (L)(−1)F = Γ ∩ ΓO

⇒ Qtop(top. O-plane) = 1

(agrees with result from CS/top. string on conifold duality Sinha-Vafa)
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Conclusions

Tadpoles of topological string are cancelled in Ooguri-Vafa setup precisely when
O4/D4 charge cancels locally.

Tadpoles of topological string are not cancelled when tadpoles of superstring are
cancelled in O6/D6 “braneworld” setup.

Note that “Ooguri-Vafa string” supporting the relevant BPS states is charged
under axions in N = 2 hypermultiplets. It appears that BPS state counting is only
well defined when that axionic charge vanishes.

Can one justify this from supergravity?

or else

What is BPS state counting when backreaction by Ooguri-Vafa string is taken
into account?
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V. Speculations

Background Independence

Witten (1993) has interpreted the holomorphic anomaly equation as an
embodiment of background independence of the topological string. Naively, F (g)

should be holomorphic functions on moduli space. Consider worldsheet
deformations

δS ∼ (XI + yI)
∫

d2xd2θφI + X̄I

∫
d2xd2θ̄φ̄I

Topological theory should depend only on XI, not on the X̄I. We need to adjust
X̄I to keep unitarity of N = 2 worldsheet theory. This specifies the “background”
around which one expands the topological string.

! Holomorphic anomaly controls dependence of F (g) on X̄I.

27

Consider total topological string amplitude

Ztop(XI, X̄I; yI) ∼ exp
[∑

g,n

λ2g−2

n!
F (g)

i1,...,in
(XI, X̄I)yi1 · · · yin

]

In appropriate variables (including Ztop → Ψclosed), holomorphic anomaly
equation takes the “holomorphic” form, similar to “heat equation” (BCOV,
E. Verlinde, Günaydin-Neitzke-Pioline)

[
∂

∂XI − 1
2CIJK

∂2

∂yJ∂yK

]
Ψclosed = 0 ,

∂
∂X̄IΨclosed =0 ,

As before, CIJK ∼ ∂I∂J∂KF (0) is three-point function on the sphere (Yukawa
coupling).
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This heat equation is equivalent to implementation of infinitesimal Bogliubov
transformation when changing the holomorphic polarization in geometric
quantization of symplectic vector space H3(Y ) (B-model).

Upshot: Topological string amplitudes F (g) depend on the background complex
structure order by order in perturbation theory.

But the total topological partition function admits an interpretation as a
background independent quantum state in the auxiliary Hilbert space HW from
quantization of H3(Y ).

Puzzles: • What is significance of HW?

• What selects Ψclosed ∈ HW?

• What are the other states?

• Relation to background independence in physical string?

Extended holomorphic anomaly sheds new light on these issues....

29

As it turns out (and this is not speculation), the extension of holomorphic
anomaly equation to open/unoriented strings is equivalent to extending the heat
equation by a “convection term,” (Cook-Ooguri-Yang, 2007, Neitzke-J.W. 2007),

[
∂

∂XI − 1
2CIJK

∂2

∂yJ∂yK
− i∆IJ

∂
∂yJ

]
Ψopen = 0 ,

∂
∂X̄IΨopen = 0 ,
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As it turns out (and this is not speculation), the extension of holomorphic
anomaly equation to open/unoriented strings is equivalent to extending the heat
equation by a “convection term,” (Cook-Ooguri-Yang, 2007, Neitzke-J.W. 2007),

[
∂

∂XI − 1
2CIJK

∂2

∂yJ∂yK
− i∆IJ

∂
∂yJ

]
Ψopen = 0 ,

∂
∂X̄IΨopen = 0 ,

The vector field ∆IJ is integrable: ∆IJ = ∂I∂JT , T ∼ disk (+ crosscap). ! The
convection term can be absorbed by a shift of variables

Ψ∆(XI, yI) = Ψopen(XI, yI − i∆I)

Note that this is not a shift of background (as the yI correspond to the
fluctuations), but is in accord with general lines of research related to open/closed
string correspondence (e.g., geometric transitions). (Perhaps closest in AdS/CFT
context is recent work by Kruczenski.)

30

Speculation 1. Significance of HW

After the shift, the open topological string partition function can be interpreted as
a state Ψ∆ ∈ HW in the same Hilbert space as the closed topological string.
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Known facts about holomorphic curves in Calabi-Yau lead to the
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Speculation 1. Significance of HW

After the shift, the open topological string partition function can be interpreted as
a state Ψ∆ ∈ HW in the same Hilbert space as the closed topological string.

Ψ∆ depends on brane configuration. It does not coincide with the closed string
wavefunction Ψclosed ≡ Ψ0.

Semi-classically,

Ψopen ∼ expλ−1

∫ C

Ω, C : holomorphic curve representing topological D-brane

Known facts about holomorphic curves in Calabi-Yau lead to the
Conjecture: The collection of all D-branes furnishes a basis of the entire
Witten-Hilbert space HW .
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Speculation 2. Finite number of states

There is a fairly well-understood mathematical sense that the number of
holomorphic curves in X of fixed topology is finite. As a result, there is only a
finite number of possible D-brane configurations that cancel the tadpoles of any
given orientifold plane.

This selects a finite number of quantum states Ψ∆ in background independent
Hilbert space HW .
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Speculation 2. Finite number of states

There is a fairly well-understood mathematical sense that the number of
holomorphic curves in X of fixed topology is finite. As a result, there is only a
finite number of possible D-brane configurations that cancel the tadpoles of any
given orientifold plane.

This selects a finite number of quantum states Ψ∆ in background independent
Hilbert space HW .

(Speculative) Conclusion: A “new” condition on the topological string (tadpole
cancellation) reduces the number of physically relevant states to a finite number.

This would be a pretty realization of a basic idea about the
ordinary physical string.


