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Introduction

GOALS:

! Understand cosmology and strong time dependence

! Understand strong SUSY breaking

! Understand connections between string theories – each of the
possible 10500 universes should contain all the others!

Each of these questions is related to the others – if we understand
one, we will understand all of them.

What are the simplest concrete models of connections and
transitions?
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What I will describe today

! A class of α′-exact classical solutions of string theory

! With D not necessarily equal to 10 or 26

! D changes dynamically

! Spacetime SUSY changes dynamically

! Worldsheet SUSY changes dynamically

! All involve closed string tachyon condensation, treated exactly
in α′ and in the tachyon strength.

THIS TALK IS A CONJECTURE-FREE ZONE!
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Solitons



Parallel with Open String Tachyon Dynamics
An analogy arises for the (bosonic) closed string tachyon,
representing an instability of spacetime itself.
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Tachyonic perturbations

We are interested in tachyonic perturbations of unstable string
theories. In the bosonic string, for instance, the tachyon T (X )
couples to the worldsheet as a normal-ordered potential : T (X ) :.

We will now discuss a large class of solvable and exactly marginal
perturbations of this form.
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T++ = − 1

α′ : ∂σ+Xµ∂σ+Xµ : +∂2
σ+(VµXµ)

T−− = − 1

α′ : ∂σ−Xµ∂σ−Xµ : +∂2
σ−(VµXµ)

where colons represent normal ordering of the 2D theory. Here, σ±

are particular light-cone combinations of the worldsheet
coordinates σ0,1:

σ± = −σ0 ± σ1

Physical states of the string correspond to local operators U that
are Virasoro primaries of weight one. That is, their operator
product expansion (OPE) with the stress tensor satisfies:

T++(σ)U(τ) " U(τ)

(σ+ − τ+)2
+

∂+U(τ)

σ+ − τ+

and similarly for T−−,
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UM ≡: T (X ) :

and admits the following on-shell condition:

∂µ∂µT (X ) − 2V µ∂µT (X ) +
4

α′ T (X ) = 0

For tachyon profiles of the form

T (X ) = µ2
exp (BµXµ)

this condition is

B2 − 2V · B = −4/α′

A general value of Bµ will lead to a nontrivial interacting theory
when the strength µ2 of the perturbation is treated as
non-infinitesimal.
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There is a special set of choices for Bµ that renders the 2D theory
well-defined and conformal to all orders in perturbation theory.

We choose the first term in the linearized tachyon equation of
motion to vanish separately.

This is tantamount to choosing the vector Bµ to be null. This
renders the vertex operator : exp (BµXµ) : non-singular in the
vicinity of itself.

We therefore put Bµ in the form

B0 = B1 ≡ β/
√

2

Bi = 0, i ≥ 2
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region, and the tachyon increases into the future.
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The initial singularity of the cosmology lies in the strong-coupling
region, and the tachyon increases into the future.

This gives rise to a particularly simple quantum theory. The kinetic
term for X± appears as

L ∼− 1

2πα′

[

(∂σ0X+)(∂σ0X−) − (∂σ1X+)(∂σ1X−)
]

The propagator for the X± fields is therefore oriented.

X+ X−
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! The X field has oriented propagators.

! All the interaction vertices in the theory depend only on X+.

! There are no non-trivial Feynman diagrams in the theory.

! This constitutes an interacting quantum theory, without
quantum corrections.

(In conformal gauge, prior to enforcing gauge constraints, the
theory is not unitary.)

The tachyon couples to the worldsheet in the term

L ∼− 1

2π
µ2

exp
(

βX+
)

Classically, X+ is harmonic, and acts as a source for X−.
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By writing the solution to the Laplace equation for X+ as

X+ = f+(σ+) + f−(σ−)

the general solution for X− can be expressed as follows:

X− = g+(σ+) + g−(σ−) +
α′βµ2

4

[
∫ ∞

σ+
dy+exp

(

βf+(y+)
)

] [
∫ ∞

σ−

dy−exp
(

βf−(y−)
)

]

We thus see that the theory is exactly solvable.

All interaction vertices in the theory depend only on X+, and
therefore correspond to diagrams composed strictly from outgoing
lines:

, , , . . . ,

Physical interpretation

The solution can be thought of as a phase boundary in spacetime
between the T = 0 phase and the T > 0 phase.



Physical interpretation

The solution can be thought of as a phase boundary in spacetime
between the T = 0 phase and the T > 0 phase.

The spacetime picture is therefore a phase bubble expanding out
from a nucleation point:
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The state collides with the bubble wall and is forced out of the
region with nonzero tachyon. (The solution has µ2 = 1, β = .1,

and the trajectory corresponds to p+ = 3, H⊥ ≡ α′p2
i

2 = 4.)

Physical interpretation
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nonzero tachyon.



Physical interpretation

Absolutely no matter (including gravitons) can enter the region of
nonzero tachyon.

The solution can be thought of as a bubble of nothing.

Time

Space

Flat space

Bubble interior
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Dimension-changing solutions in the bosonic string

Let’s now inroduce some dependence on a third direction:

T (X+,X2) = +
µ2

2α′ exp
(

βX+
)

: X 2
2 : +T0(X

+)

T0(X
+) =

µ2 X+

α′ q
√

2
exp

(

βX+
)

+ µ′2
exp

(

βX+
)

Dimension-changing solutions in the bosonic string

States with modes of X2 excited are pushed out along the bubble
wall: the physics is essentially the same as the bubble of nothing.
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States with modes of X2 excited are pushed out along the bubble
wall: the physics is essentially the same as the bubble of nothing.

So these string states are pushed out to infinity and disappear from
the theory in the late-time limit:
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There is a less generic class of states with no energy in the X2

direction.

Flat space

Bubble interior

States with X  excited2

States with no X  excitations2

These propagate through the domain wall and into the bubble

region.
The result is that the amount of matter on the worldsheet
decreases dynamically as a function of time.
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Dimension-changing solutions in the bosonic string
In other words, the number of dimensions in the target space

decreases as a function of time.

Question: What happens to the central charge if the spacetime
dimension shifts? How can the perturbation be marginal?

The theory is solvable, so we should be able to answer this
question exactly.

In fact, quantum corrections in this theory truncate at one-loop
order:

= + +

+ + + (perms.)
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Dimension-changing solutions in the bosonic string

The one-loop diagrams can be thought of as a set of effective
vertices for X+, associated with integrating out the massive field
X2.

In fact: in the far future, all corrections coming from integrating
out X2 decay away, except for three contributions:

! the effective tachyon,

! the dilaton,

! the string-frame metric.



Dimension-changing solutions in the bosonic string

The remaining contributions are always nonzero, coming from the
following diagrams:

∆(∂+Φ) =

∆G++ =

Dimension-changing solutions in the bosonic string

The remaining contributions are always nonzero, coming from the
following diagrams:

∆(∂+Φ) =

∆G++ =

Write the renormalized dilaton gradient and string-frame metric as:

V̂µ ≡ Vµ + ∆Vµ

Ĝµν ≡ Gµν + ∆Gµν
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In the X+ → ∞ limit, we therefore get

cdilaton = 6α′ĜµνV̂µV̂ν = −(D − 26) + 1

The result is that the shift in cenral charge contribution from the
dilaton precisely cancels the central charge shift due to the
reduction in spacetime dimension.
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Dimension-changing solutions in the bosonic string

This mechanism of central charge transfer works equally well when
the tachyon has a quadratic minimum in several transverse
directions:

cdilaton = 6α′Ĝµν V̂µV̂ν = −6α′q2 +
nqβα′

√
2

− nα′2q2β2

8
= −(D − 26) + n

We can get rid of as many dimensions as we want.

We can even get down to D=2!
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Transitions from type 0 to type II string theory

The type 0 theory also has a rich structure of transitions –
including dimension-reducing transitions of the type we have just
discussed for the bosonic string. (We will not review these here.)

Let us consider some other types of transitions that the type 0
string can undergo, in a linear dilaton background.

Instead of starting with type 0 on a smooth space, we can consider
starting on a ZZ2 orbifold of flat space.

As an example, start with type 0 string theory in 12 dimensions,
with one dimension orbifolded by a reflection:

X 11 → −X 11 .
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(For modular invariance, we can stipulate that this acts
simultaneously as a chiral R parity, (−1)FLW .)

That is, the orbifold symmetry acts on the worldsheet fields as:
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G̃ : −
G : +

where G and G̃ are the right- and left-moving worldsheet
supercurrents.
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The orbifold singularity has real codimension 1, with massless
spacetime fermions propagating on the 10 + 1 dimensional fixed
locus {XM = X 0,··· ,10}.

The boundary conditions at the orbifold force the tachyon T to
vanish at X11 = 0:

T (XM ,X 11) = −T (XM ,−X 11)
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Starting with type 0 in this 12-dimensional geometry, we can
consider a local tachyon profile which describes the behavior of a
generic tachyon vev near the orbifold fixed locus:

T = µ exp
(

βX+
)

X10X11, βq =

√
2

α′

The tachyon couples to the worldsheet as a (1, 1) superpotential:

Lint =
i

2π

∫

dθ+dθ− T (X )

This gives rise to a potential and Yukawa term:

Lint = −α′µ2

8π
exp

(

+2βX+
)

·

[

(

X 2
10 + X 2

11

)

+
iα′µ

4π

(

ψ̃10ψ11 + ψ̃11ψ10
)

]

Transitions from type 0 to type II string theory
To discern the effective physics of the ten-dimensional final state,
note that the GSO projection of the X+ → ∞ theory is now
generated by two elements.
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Transitions from type 0 to type II string theory
To discern the effective physics of the ten-dimensional final state,
note that the GSO projection of the X+ → ∞ theory is now
generated by two elements.

The orbifold symmetry (−1)FLW acts on the remaining worldsheet
fields as:

X 0−10 : +

G̃ : −
G : +

We also have the generator (−1)FW of the type 0 GSO projection.
The product (−1)FRW ≡ (−1)FW · (−1)FLW acts as:

X 0−9 : +

G̃ : +

G : −
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Transitions from type 0 to type II string theory

We thus have the usual GSO projection of critical type II string
theory. The worldsheet theory X+ → ∞ is therefore identical to
the worldsheet theory of the type II superstring.

The background values of all fields are trivial, save for the dilaton,
which has a lightlike gradient, rolling to weak coupling in the
future.

A type II background with flat string-frame metric and lightlike
linear dilaton actually preserves sixteen Killing spinors.

Our final state is therefore a half-BPS vacuum of type II string
theory.

This exact solution establishes conclusively that the type 0 theory
in supercritical dimensions can relax by tachyon condensation to a
supersymmetric ground state in D=10!
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Lightlike tachyon condensation in type 0

In all examples so far, the basic kind of string theory is unchanged
between the initial and final configurations.

We now turn to a related model of lightlike tachyon condensation
in type 0 string theory, where the tachyon depends only on X+,
and is independent of the D − 2 dimensions transverse to X±.

We start with the Lagrangian for a timelike linear dilaton theory on
a flat worldsheet, describing D free, massless fields and their
superpartners:

Lkin =
1
2π

GMN

[

2
α′

(∂+XM)(∂−XN) − iψM(∂−ψN) − iψ̃M(∂+ψ̃N)

]

Lightlike tachyon condensation in type 0

We would like to consider solutions for which the type 0 tachyon
condenses, growing exponentially in the lightlike direction X+.



Lightlike tachyon condensation in type 0

We would like to consider solutions for which the type 0 tachyon
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We again take the simple form

T ≡ µ̃ exp
(

βX+
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Remember that the tachyon couples to the worldsheet as a (1, 1)
superpotential, giving rise to a worldsheet potential and Yukawa
term:

Lint = − α′

8π
GMN ∂MT ∂NT +

iα′

4π
∂M∂NT ψ̃MψN

We also get a modified supersymmetry transformation for the
fermions:

{Q−, ψM} = −{Q+, ψ̃M} = FM

FM ≡ −
√

α′

8
GMN∂NT
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Since the gradient of the tachyon is null, the worldsheet potential

α′

16π
GMN ∂MT ∂NT

is ZERO.

But there is a nonvanishing F -term and Yukawa coupling between
the lightlike fermions:

F− = +
q
√

α′µ
2

exp
(

βX+)

LYukawa =
i µ
4π

exp
(

βX+)

ψ̃+ψ+

where µ ≡ β2α′ µ̃.

The 2D interaction terms become large as X+ → +∞ :

We’ll have to deal with that!
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Lightlike tachyon condensation in type 0

There is no worldsheet potential, so all string states pass through
the domain wall of the tachyon condensate.

Perform a canonical change of variables so that the new variables
have weak interactions in the limit X+ → ∞:

{ψ+,ψ−, ψ̃+, ψ̃−,Xµ} ⇒ {b1, c1, b̃1, c̃1,X
′µ}

where b1 and c1 are a new set of ghost variables, with weights 3/2
and −1/2, and c = −11.

These have nothing to do with the Fadeev-Popov ghosts.

Also, twelve units of central charge are transferred from the light
cone fermions ψ± to the dilaton gradient.

Deep inside the tachyon condensate
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Deep inside the tachyon condensate

The new Lagrangian is free, except for the interaction term

Lint = µ−1
exp

(

−βX+
)

b̃1b1

and becomes free in the limit X+ → ∞
What is this new theory?

In the late time limit, the theory deep inside the tachyon
condensate is formally type 0 string theory, but in actuality, it is
precisely equal to bosonic string theory.

In the natural variables of the late-time limit, the theory precisely
realizes a well-known mechanism, originally found by Berkovits and
Vafa.
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The total transformed stress tensor is

T = Tmat + T b1c1

with

T b1c1 = −3i

2
∂+c1b1 −

i

2
c1∂+b1 +

i

2
∂+(c1∂

2
+c1)

Plugging in q =
√

D−10
4α′ and c⊥ = 3

2(D − 2):

G = b1 + ic ′1b1c1 − c1T
mat − 5

2
c ′′1
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The X+ → ∞ limit of our solution is described by a free
worldsheet theory, D free scalars X ′M and D − 2 free fermions ψ′i .

The total central charge of the XM , ψi system is 26, and the
contribution of −11 from the b1c1 system brings the total central
charge to 15.

The theory has critical central charge for a SCFT interpreted as
the worldsheet theory of a RNS superstring in conformal gauge.
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This type of superconformal field theory is an embedding of the
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Berkovits-Vafa construction

This type of superconformal field theory is an embedding of the
bosonic string in the solution space of the superstring. [hep-th/9310170]

For a conformal field theory Tmat with a central charge of 26, it is
possible to construct a corresponding superconformal field theory
defined by G , T with central charge 15.

Upon treating the superconformal theory as a superstring theory,
the resulting physical states and scattering amplitudes are identical
to those of the theory defined by Tmat when treated as a bosonic
string theory.
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Transition to bosonic string theory

To summarize, the transition follows an instability in an initial
D-dimensional type 0 theory.

The dynamics then spontaneously break worldsheet
supersymmetry, giving rise to a bosonic string theory in the same
number of dimensions deep inside the tachyonic phase.

Bubble nucleation

X

Time

Type 0 superstring theory

Bosonic string theory

1
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These techniques can be used to determine the fate of many other
famous instabilities of closed string theories.

Consider unstable 10D heterotic string theory with a single E8

gauge group, realized as a current algebra at level two.

This theory has a single real tachyon T .

The endpoint of tachyon condensation in this theory has been a
subject of much speculation.

[Hǒrava + Fabinger, 2000]

E8 heterotic string theory

We consider the theory in the background of a lightlike linear
dilaton

Φ = − q√
2
X−



E8 heterotic string theory
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dilaton

Φ = − q√
2
X−

This theory admits several exact solutions describing dynamical
tachyon condensation to different types of endpoints.
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T = µX9 exp
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E8 heterotic string theory

One exact solution (studied by Hǒrava and Keeler) describes a
bubble of nothing similar to the one we described in the bosonic
string. The form of the solution is

T = µ exp
(

βX+
)

with qβ =
√

2
α′ .

[Hǒrava and Keeler, 2007]

We found another interesting exact solution, of the form

T = µX9 exp
(

βX+
)

.

The endpoint of this solution can be analyzed exactly . The
solution does not destroy the universe, but it does reduce the
dimension of the spacetime.
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E8 heterotic string theory

In this case, the endpoint is a previously unknown string theory
that is interesting in its own right.

The final state lives in nine dimensions with the following
properties:

! stable (tachyon-free)

! with spacelike linear dilaton

! with no moduli or other massless fields

! E8 gauge symmetry left unbroken



The tachyonic E8 string

The spectrum of the final theory is

ZNS
mass(τ) = (qq̄)+

1
16

[

1, 785 + 108, 500(qq̄)+
1
2 + O

(

qq̄
) ]

ZR
mass(τ) = 1, 984 + 4, 058, 880(qq̄)1 + O

(

(qq̄)2
)

theory sector mass field content mult.

UHE NS m2 = −2/α′ T 1
NS m2 = 0 Φ(1) + G(35) + B(28) + A(1984) 2048
R m2 = 0 Λ+(1984) + Λ−(1984) 3968

HE9 NS m2 = +1/(4α′) Φ̂(1) + Ĝ(27) + B̂(21) + Â(1736) 1785
R m2 = 0 Λ̂(1984) 1984

The tachyonic E8 string

The spectrum of the final theory is

ZNS
mass(τ) = (qq̄)+

1
16

[

1, 785 + 108, 500(qq̄)+
1
2 + O

(

qq̄
) ]

ZR
mass(τ) = 1, 984 + 4, 058, 880(qq̄)1 + O

(

(qq̄)2
)

theory sector mass field content mult.

UHE NS m2 = −2/α′ T 1
NS m2 = 0 Φ(1) + G(35) + B(28) + A(1984) 2048
R m2 = 0 Λ+(1984) + Λ−(1984) 3968

HE9 NS m2 = +1/(4α′) Φ̂(1) + Ĝ(27) + B̂(21) + Â(1736) 1785
R m2 = 0 Λ̂(1984) 1984

There is tachyon-free, with no supersymmetry.
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N = 2 string theory

Consider N = 2 string theory.

In the critical dimension (D = 4), the signature of the theory is
(2, 2).

The supercritical theory has a single timelike direction!

The theory has tachyonic modes that obey a holomorphic equation
of motion.

The simplest null holomorphic tachyon gives rise to a transition to
bosonic string theory. At the endpoint, the theory is an analogue
of the Berkovits-Vafa system discussed above.

Outline

Bosonic string solutions with nonzero tachyon

Dimension-changing solutions in the bosonic string

Transitions from type 0 to type II string theory

Lightlike tachyon condensation in Type 0

Other examples
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A partial catalog of exact transitions

start Dinit exp
(

−βX+
)

T end Dfin comments

bos D µ2 X 2
2 + T0 bos D-1 tuned

0 D µX2X3 0 D-2 natural
0 (orb) D µXi+1Yi II 10 stable

0 D µ bos D tuned
+ 1

2 (D-2)
UHE 10 µX2 HE9 9 stable

HO(+1) 11 µX2 HO 10 stable

HO(+1)/ 11 µX2 HO/ 10 natural

HO(+1)/ 11 µX2 HO 10 stable
(orb)
N 2 Dc µφ2φ3 N 2 Dc natural
= 2 - 1 = 2 - 5
N 2 Dc µ bos 3 Dc tuned
= 2 - 1 - 2

The Big Picture – Part I

Tuned, 

Natural transition

Tuned, µ < 0

µ > 0

T!duality

Type 0BType 0A

Type 0B

even D

Type 0A

even D

Type 0

D!1

D!2 D!2

Type 0BType 0A

4D

Type 0A
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Type 0B

2D

4D

Type 0B

8D

Type 0A

8D

Type 0A

10D

Type 0B

10D

Type 0

11D

Type 0

9D

Type 0
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Type 0B

12D

Type 0A

12D



The Big Picture – Part II

Scherk!Schwarz
+ T!duality
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The Big Picture – Part III
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Conclusions

! Supercritical string theory has some surprising and interesting
properties.

! We see that the supercritical string can be connected to the
duality web of critical string theory.

! We have found solutions that interpolate between superstring
theory and purely bosonic string theory.

! The surprising feature of these connections is the crucial role
of time dependence.

! There may be other interesting links between theories that we
have yet to discover.

! Thank you!
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Details of the transformation

Rescale the b4 field so that the new b fermion appears in the
supercurrent with unit normalization. To preserve all canonical
commutators, however, we will rescale the c4 field oppositely:

b4 =
2

q
√

α′
b3 = β

√
2α′ b3

c4 =
q
√

α′

2
c3 =

1

β
√

2α′
c3

The IR limit
The invariance properties of the system under spatial reflection are
still unclear.
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The IR limit
The invariance properties of the system under spatial reflection are
still unclear.

The stress tensor is invariant under the discrete symmetry
reflecting the spacelike vector orthogonal to V̂µ.

The supercurrent is not, however, since Vµ and ∆Vµ appear
independently in GLC.

We would like to find field variables that render this discrete
symmetry more manifest, such that only the vector V̂µ enters GLC.

We therefore define new variables b2, c2, Zµ by:

Y ± = Z± ± i

2β
c2∂+c2

b3 = b2 −
2

βα′
(∂+c2)

(

∂+Z+ − ∂+Z−
)

− 1
βα′

c2

(

∂2
+Z+ − ∂2

+Z−
)

+
i

2β2α′
c2(∂+c2)(∂

2
+c2)

c3 = c2
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The bosons Zµ transform into their own derivatives, times a
goldstone fermion:

[Q,Zµ] = ic2∂+Zµ {Q, c2} = 1 + ic2∂+c2

where

Q ≡ 1

2π

∫

dσ1 G (σ)

In the sector involving the transverse fields Xi , ψi , supersymmetry
is realized in the usual linear fashion:

[Q,Xi ] = i

√

α′

2
ψi

{Q,ψi} =

√

2

α′ ∂+Xi
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At first sight, our realization of supersymmetry in the full theory is
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The IR limit
At first sight, our realization of supersymmetry in the full theory is
unfamiliar, with worldsheet supersymmetry realized linearly in one
sector and nonlinearly in another.

However, it turns out that this realization is equivalent to one for
which worldsheet supersymmetry is realized completely nonlinearly
in all sectors.

We now perform a final transformation on the system.
Defining the Hermitian infinitesimal generator

g ≡ − i

2π

∫

dσ1c2(σ)G⊥(σ)

we transform all operators in the theory according to

O → U OU−1

with
U ≡ exp (ig)


