Developments in BPS Wall-Crossing

Strings 2008, Cern, August 22, 2008

Work done with Davide Gaiotto and Andy Neitzke arXiv:0807.4723

And, to appear...

Outline

- 1. Review BPS Wall-Crossing
- 2. The Kontsevich-Soibelman formula
- 3. N=2,D=4 Field Theory on $\mathbb{R}^3 imes S^1$
- 4. Twistor Space
- 5. One-particle corrections
- 6. Multi-particle corrections: Riemann-Hilbert
- 7. Differential Equations
- 8. Summary & Concluding Remarks

Introduction

This talk is about the BPS spectrum of theories with d=4,N=2

Recently there has been some progress in understanding how the BPS spectrum depends on the vacuum.

These are called Wall-Crossing Formulae (WCF)

Last year: WCF derived with Frederik Denef

Subsequently, Kontsevich & Soibelman proposed a remarkable wall-crossing formula for generalized Donaldson-Thomas invariants of CY 3-folds

This talk will give a physical explanation & derivation of the KS formula

Review of BPS Wall-Crossing-I

Consider a theory on \mathbb{R}^4 with $\mathcal{N}=2$ SUSY

For $u \in \mathcal{M}_v$, the moduli space of vacua,

let \mathcal{H}_u be the one-particle Hilbert space.

Low energy theory: an unbroken rank r <u>abelian</u> gauge theory

 Γ : Symplectic lattice of electric & magnetic charges γ

$$\mathcal{H}_u = \oplus_{\gamma \in \Gamma} \mathcal{H}_{\gamma,u}$$

BPS-II

 $\mathcal{N}=2$ central charge operator $\hat{Z}=Z_{\gamma}(u)$ on $\mathcal{H}_{\gamma,u}$

 $\mathcal{H}_{u,\gamma}^{BPS}$: Subspace of $\mathcal{H}_{\gamma,u}$ with $E = |Z_{\gamma}(u)|$

$$\Omega(\gamma; u) := -\frac{1}{2} \operatorname{Tr}_{\mathcal{H}_{\gamma, u}^{BPS}} (2J_3)^2 (-1)^{2J_3}$$

Some BPS states are boundstates of other BPS states.

 $\psi \in \mathcal{H}_{\gamma,u}^{BPS}$, a boundstate of BPS states: $\gamma = \gamma_1 + \gamma_2$,

 ψ will decay as u crosses a wall of marginal stability where $Z_{\gamma_1}(u)$ and $Z_{\gamma_2}(u)$ are parallel.

(Cecotti, Fendley, Intriligator, Vafa; Seiberg&Witten)

Semi-Primitive Wall-Crossing

Marginal Stability Wall:
$$MS(\gamma_1,\gamma_2):=\{u|rac{Z_{\gamma_1}(u)}{Z_{\gamma_2}(u)}\in\mathbb{R}_+\}$$

$$u_+\qquad \qquad u_{ms}$$

$$u_-$$

Denef & Moore gave formulae for $\Delta\Omega$

for decays of the form
$$\gamma \rightarrow \gamma_1 + N\gamma_2$$
 $N \geq 1$

Based on Denef's multi-centered solutions of sugra, and quiver quantum mechanics.

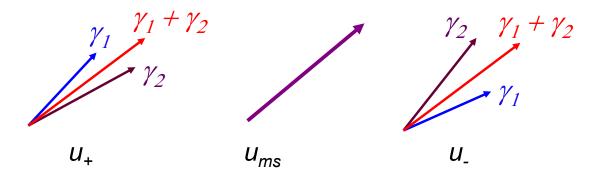
Do not easily generalize to $\gamma
ightarrow N_1 \gamma_1 + N_2 \gamma_2$ $N_i \geq 1$

BPS Rays

For each $\gamma \in \Gamma$ associate a ray in the ζ plane:

$$\ell_{\gamma} := Z_{\gamma}(u)\mathbb{R}_{-}$$

As u crosses an MS wall some BPS rays will coalesce:



Symplectic transformations

$$T := \Gamma^* \otimes \mathbb{C}^* \cong (\mathbb{C}^*)^{2r}$$

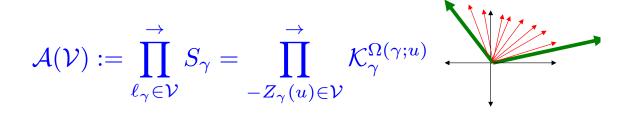
 \mathcal{K}_{γ} : Symplectic transformations of T

KS assign a group element S_{γ} to each BPS ray ℓ_{γ}

$$S_{\gamma} := \prod_{\gamma' \parallel \gamma}^{\rightarrow} \mathcal{K}_{\gamma'}^{\Omega(\gamma';u)}$$

KS WCF

For generic u, and convex cone \mathcal{V} in the ζ -plane



Main statement: The product is INDEPENDENT OF u

This is a wall-crossing formula !!

KS Transformations

$$T = \Gamma^* \otimes \mathbb{C}^* \Rightarrow \text{Fourier modes: } X_{\gamma} : T \to \mathbb{C}^*$$

$$\epsilon^{ij} = \langle \gamma^i, \gamma^j \rangle \Rightarrow \varpi^T := \frac{1}{2} \epsilon_{ij} \frac{dX^i}{X^i} \frac{dX^j}{X^j}$$

$$\mathcal{K}_{\gamma}: X_{\gamma'} \to X_{\gamma'} e^{\langle \gamma, \gamma' \rangle \log(1 - X_{\gamma})}$$

Example for r=1:
$$T=\mathbb{C}^* \times \mathbb{C}^*$$
 $\varpi^T=rac{dx}{x}rac{dy}{y}$

$$\mathcal{K}_{a,b}: (x,y) \to (x(1-x^ay^b)^b, y(1-x^ay^b)^{-a})$$

Seiberg-Witten Theory

Consider a d = 4, $\mathcal{N} = 2$ field theory with a semisimple gauge group of rank r.

$$\mathcal{M}_v \cong \mathbb{C}^r$$
 $(u_2 = \langle \operatorname{Tr}\Phi^2 \rangle, u_3 = \langle \operatorname{Tr}\Phi^3 \rangle, \cdots)$

 $\Gamma o \mathcal{M}_v$ is now a local system

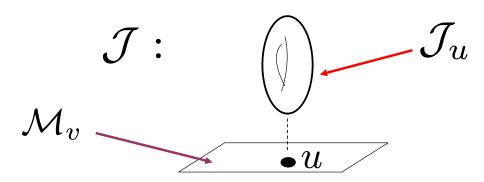
Locally, we may choose a duality frame $\ \Gamma\cong\Gamma_{el}\oplus\Gamma_{mq}$

Special coordinates $a^I = Z_{lpha^I}(u)$

$$Z_{\gamma}(u) = a \cdot \gamma_{el} + a_D \cdot \gamma_{mg}$$

Low Energy Theory on R⁴

Torus fibration: $\mathcal{J}_u := \Gamma_u^* \otimes (\mathbb{R}/2\pi\mathbb{Z})$

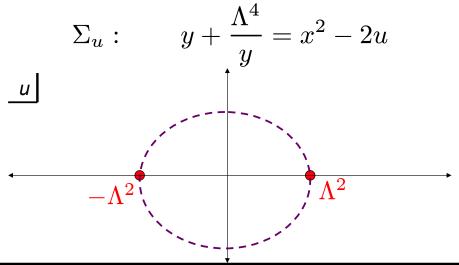


Generic fibers \mathcal{J}_u : Abelian varieties

Choosing a duality frame:

$$\mathcal{L} = -\frac{1}{4\pi} \operatorname{Im} \tau_{IJ} (da^I * d\bar{a}^J + F^I * F^J) + \frac{1}{4\pi} \operatorname{Re} \tau_{IJ} F^I F^J + \cdots$$

Example of G=SU(2)



 $\mathcal{K}_{2,-1}\mathcal{K}_{0,1} = \mathcal{K}_{0,1}\mathcal{K}_{2,1}\mathcal{K}_{4,1}\cdots\mathcal{K}_{2,0}^{-2}\cdots\mathcal{K}_{4,-1}\mathcal{K}_{2,-1}$

It's true!!!

Low Energy theory on $\mathbb{R}^3 \times S^1$

(Seiberg & Witten)

$$arphi_e^I = \oint_{S^1} A_4^I dx^4$$
 Periodic coordinates

$$\varphi_{m,I} = \oint_{S^1} (A_{D,4})_I dx^4 \qquad {\rm for} \qquad {\mathcal J}_{\pmb u}$$

Susy \longrightarrow \mathcal{J} is hyperkähler

Semiflat Metric

$$R$$
 = radius of S^1 $R o \infty$

KK reduce and dualize the 3D gauge field:

$$g^{\rm sf} = R \operatorname{Im} \tau |da|^2 + (R \operatorname{Im} \tau)^{-1} |dz|^2$$

$$dz_I = d\varphi_{m,I} - \tau_{IJ} d\varphi_e^J$$

The Main Idea

- g^{sf} is quantum-corrected by BPS states (instanton = worldline of BPS particle on S¹)
- So, quantum corrections <u>depend</u> on the BPS spectrum
- The spectrum jumps, but the <u>true</u> metric g must be smooth across MS walls.
- This implies a WCF!

Twistor Space

$$\mathcal{Z} := \mathcal{J} \times \mathbb{C}P^1 \stackrel{p}{\rightarrow} \mathbb{C}P^1$$

\mathcal{J}_{ζ} has complex structure $\zeta \in \mathbb{C}P^1$

A HK metric g is equivalent to a fiberwise holomorphic symplectic form

$$\varpi \in \Omega^2_{\mathcal{Z}/\mathbb{C}P^1} \otimes \mathcal{O}(2)$$

$$\varpi_{\zeta} = \zeta^{-1}\omega_{+} + \omega_{3} + \zeta\omega_{-}, \quad \zeta \in \mathbb{C}^{*}$$

Holomorphic Fourier Modes

$$\mathcal{J}_{\zeta} \to \mathcal{M}_{v}$$
 is a torus fibration

 \exists a basis of holomorphic functions $\mathcal{X}_{\gamma}(\zeta)$, $\gamma \in \Gamma$

Restriction to torus $(\mathcal{J}_{\zeta})_u \Rightarrow \mathcal{X}_{\gamma}(\zeta) = \exp[i\theta_{\gamma} + \cdots]$

$$\mathcal{J}_u = \Gamma_u^* \otimes (\mathbb{R}/2\pi\mathbb{Z}) \quad T_u = \Gamma_u^* \otimes \mathbb{C}^*$$

$$\mathcal{X}(\zeta): \mathcal{J}_{\zeta} \to T \qquad \mathcal{X}_{\gamma}(\zeta) = \mathcal{X}(\zeta)^*(X_{\gamma})$$
 $\varpi_{\zeta} = \mathcal{X}(\zeta)^*(\varpi^T)$

Semiflat holomorphic Fourier modes

$$\mathcal{X}_{\gamma}^{\mathrm{sf}} = \exp\left[\pi R \zeta^{-1} Z_{\gamma} + i\theta_{\gamma} + \pi R \zeta \bar{Z}_{\gamma}\right]$$

(Neitzke, Pioline, & Vandoren)

Strategy: Compute quantum corrections to $\mathcal{X}_{\gamma}^{\mathrm{sf}}$

$$\mathcal{X}_{\gamma} = \mathcal{X}_{\gamma}^{\mathrm{sf}} \mathcal{X}_{\gamma}^{\mathrm{inst}}$$

Recover the metric from $\varpi_{\zeta}=\mathcal{X}(\zeta)^*(\varpi^T)$

One Particle Corrections

- Work near a point u* where one HM, #
 becomes massless
- Dominant QC's from instantons of these BPS particles
- Choose a duality frame where ${\boldsymbol{\mathcal{H}}}$ has electric charge q>0
- Do an effective Lagrangian computation

Periodic Taub-NUT

r=1: Gibbons-Hawking metric on U(1) fibration over $\mathbb{R}^2\times S^1$

$$g^{\text{PTN}} = V^{-1}(d\varphi_m + A)^2 + V \left[|da|^2 + (d\varphi_e)^2 \right]$$
$$V = V^{\text{sf}} + V^{\text{inst}}$$
$$V^{\text{sf}} = -q^2 R \left(\log \frac{a}{\Lambda} + \log \frac{\bar{a}}{\bar{\Lambda}} \right)$$

$$V^{\text{inst}} = q^2 R \sum_{n} e^{inq\varphi_e} K_0(R|nqa|)$$

(S&W, Ooguri & Vafa, Seiberg & Shenker)

Twistor coordinates for PTN

From the metric g^{PTN} we compute ϖ^{PTN}

$$egin{align} arpi^{PTN} &= \mathcal{X}^*(arpi^T) = rac{d\mathcal{X}_e}{\mathcal{X}_e} rac{d\mathcal{X}_m}{\mathcal{X}_m} \ & \mathcal{X}_e(\zeta) = \exp[iarphi_e + \cdots] \ & \mathcal{X}_m(\zeta) = \exp[iarphi_m + \cdots] \ \end{aligned}$$

Differential equation for twistor coordinates

Explicit PTN twistor coordinates

$$\mathcal{X}_{e}(\zeta) = \mathcal{X}_{e}^{\mathrm{sf}} = \exp[R\zeta^{-1}a + i\varphi_{e} + R\zeta\bar{a}]$$

$$\mathcal{X}_{m}(\zeta) = \mathcal{X}_{m}^{\mathrm{sf}}\mathcal{X}_{m}^{\mathrm{inst}}$$

$$\mathcal{X}_{m}^{\mathrm{sf}} = \exp[R\zeta^{-1}a_{D} + i\varphi_{m} + R\zeta\bar{a}_{D}]$$

$$\mathcal{X}_m^{\mathrm{inst}}(\zeta) \sim \exp\left\{q \int_{\ell_{\gamma_e}} [d\zeta'] \frac{\log[1 - \mathcal{X}_e(\zeta')^q]}{\zeta' - \zeta}\right\}$$

Key features of the coordinates

1. As a function of ζ , \mathcal{X}_m is discontinuous across the electric BPS ray ℓ_{γ_e} .

The discontinuity is given by a KS transformation!

$$(\mathcal{X}_e, \mathcal{X}_m)^{ccw} = \mathcal{K}_{\gamma_e}(\mathcal{X}_e, \mathcal{X}_m)^{cw}$$

2.
$$\mathcal{X}_m(\zeta) \sim_{\zeta \to 0,\infty} \mathcal{X}_m^{\mathrm{sf}}(\zeta)$$

As befits instanton corrections.

Multi-Particle Contributions

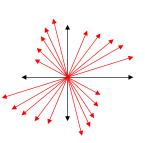
- To take into account the instanton corrections from ALL the BPS particles we cannot use an effective field theory computation.
- Mutually nonlocal fields in L_{eff} are illegal!
- · We propose to circumvent this problem by reformulating the instanton corrections as a Riemann-Hilbert problem in the ζ plane.

Riemann-Hilbert problem

 $\mathcal{X}(\zeta): \mathcal{J}_{\zeta}
ightarrow T$ Piecewise holomorphic family

1. Across each BPS ray ℓ_{γ}

$$\mathcal{X}(\zeta)^{ccw} = S_{\gamma}\mathcal{X}(\zeta)^{cw}$$



2.
$$\mathcal{X}(\zeta) \to \mathcal{X}^{\mathrm{sf}}(\zeta)$$

Exponentially fast for $\zeta o 0, \infty$

$$\zeta \to 0, \infty$$

Solution to the RH problem

$$\mathcal{X}_{\gamma}(\zeta) = \mathcal{X}_{\gamma}^{\mathrm{sf}}(\zeta) \cdot \exp \left\{ \sum_{\gamma'} \Omega(\gamma'; u) \langle \gamma, \gamma' \rangle \int_{\ell_{\gamma'}} [d\zeta'] \frac{\log(1 - \mathcal{X}_{\gamma'}(\zeta'))}{\zeta' - \zeta} \right\}$$

Explicit instanton expansion as a sum over trees

$$\mathcal{X}_{\gamma}(\zeta) = \mathcal{X}_{\gamma}^{\mathrm{sf}}(\zeta)\mathcal{X}_{\gamma}^{\mathrm{inst}}(\zeta)$$

KS WCF = Continuity of the metric

As u crosses a wall, BPS rays pile up

KS WCF \Longrightarrow Discontinuity from ζ_+ to ζ_- is unchanged

 $\Longrightarrow \varpi$ and hence g is continuous across a wall!

Differential Equations

The Riemann-Hilbert problem is equivalent to a flat system of differential equations:

$$\begin{split} \zeta \partial_\zeta \mathcal{X} &= (\zeta^{-1} A_\zeta^- + A_\zeta^0 + \zeta A_\zeta^+) \mathcal{X} \quad \text{U(1)}_{\textit{R}} \text{ symmetry} \\ R \partial_R \mathcal{X} &= (\zeta^{-1} A_R^- + A_R^0 + \zeta A_R^+) \mathcal{X} \quad \text{scale symmetry} \\ \partial_u \mathcal{X} &= (\zeta^{-1} A_u^- + A_u^0) \mathcal{X} \quad \quad \text{holomorphy} \end{split}$$

Stokes factors are independent of u,R

Compute at large R: Stokes factors = KS factors S_{γ}

Summary

- We constructed the HK metric for circle compactification of SW theories.
- Quantum corrections to the dim. red. metric g^{sf} encode the BPS spectrum.
- Continuity of the metric across walls of MS is equivalent to the KS WCF.
- Use the twistor transform to include quantum corrections of mutually nonlocal particles

Other Things We Have Studied

- The \mathcal{X}_{γ} are Wilson-'tHooft-Maldacena loop operators, and generate the chiral ring of a 3D TFT
- Analogies to tt* geometry of Cecotti & Vafa
- Relations to Hitchin systems and D4/NS5 branes following Cherkis & Kapustin.

Open Problems

- · Singularities at superconformal points
- Relations to integrable systems?
- Meaning of KS ``motivic WCF formula"?
- Relation to the work of Joyce
 & Bridgeland/Toledano Laredo
- Generalization to SUGRA
- QC's to hypermultiplet moduli spaces