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One of the successes of string theory has been
an explanation of the Bekenstein-Hawking en-
tropy of a class of supersymmetric black holes
in terms of microscopic quantum states.

SBH = Smicro

Strominger, Vafa

SBH = A/4GN, A = Area of event horizon

Smicro = ln(degeneracy)
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Originally the comparison between black hole
and statistical entropy was carried out in the
limit of large charges.

Can we go beyond this limit?

In order to study this problem we need to ad-
dress two separate issues.

1. We need to learn how to take into ac-
count the effect of the higher derivative terms
/ quantum corrections on the computation of
black hole entropy.

2. We also need to know how to calculate the
statistical entropy to greater accuracy.
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In string theories with sufficient amount of su-
persymmetry we now have a good control over
counting of microstates and computing sta-
tistical entropy for supersymmetric extremal
black holes.

In this talk I shall address the other side of
the problem, ı.e. of computing higher deriva-
tive and quantum corrections to extremal black
hole entropy.
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A general frameork for computing higher deriva-
tive corrections to classical black hole entropy
has been developed by Wald.

For extremal black holes this can be encoded
in the entropy function formalism.

Our main goal will be to understand the effect
of quantum corrections on extremal black hole
entropy.

We shall begin with a lightening review of the
entropy function formalism.
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Postulate: An extremal black hole has an AdS2

factor / (SO(2,1) isometry in the near horizon
geometry.

Regarding all other directions (including angu-
lar coordinates) as compact we can regard the
near horizon geometry of an extremal black
hole as

AdS2 × a compact space (fibered over AdS2)
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Consider string theory in such a background
containing two dimensional metric gµν and U(1)

gauge fields A(i)
µ among other fields.

The most general field configuration consis-
tent with SO(2,1) isometry:

ds2 ≡ g(2)
µν dxµdxν = v

(

−(r2 − 1)dt2 +
dr2

r2 − 1

)

F (i)
rt = ei, · · · · · · · · ·

L(2)(v,"e, · · ·): The Lagrangian density evalu-
ated in this background.
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Define

E("q, v,"e, · · ·) ≡ 2π
(
ei qi − vL(2)

)

One finds that for a black hole of charge "q

1. All the near horizon parameters are obtained
by extremizing E with respect to v, ei and the
other near horizon parameters.

2. Swald("q) = E at this extremum.

We need to compare Swald("q) with ln dmicro("q).
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We shall now try to generalize this formula tak-
ing into account quantum corrections.

1. We shall not make use of SUSY, although
SUSY is undoubtedly useful in ensuring stabil-
ity of the extremal BPS black holes.

2. Semiclassical part of our analysis will be
close to the Euclidean approach to black hole
thermodynamics.

However we shall work entirely in the near hori-
zon geometry of the black hole instead of the
full black hole solution.
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3. We shall assume that there are no multi-
centered black holes degenerate with the single
centered extremal black hole so that dmicro("q)
contributes only to the entropy of single cen-
tered black holes.
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Suggested relation between geometry and mi-
crostate counting:

ZAdS2
("e) =

∑

"q

dmicro("q) e−2π"e·"q

(possibly as an asymptotic expansion about
classical limit)

ZAdS2
("e): Euclidean partition function of string

theory in AdS2 background given by the attrac-
tor geometry corresponding to "e.
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We shall try to justify this by two means.

1. In the classical limit∗ this corresponds to

Swald("q) = ln dmicro("q)

2. This fits in with the usual rules of AdS/CFT

correspondence.

∗ Classical limit may be defined as

L(2) → λL(2), "q → λ"q

with λ large.
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ds2 = v

(

−(r2 − 1)dt2 +
dr2

r2 − 1

)

F (i)
rt = ei

Euclidean continuation:

t = −iθ, r = cosh η, θ ≡ θ + 2π, 0 ≤ η < ∞

This gives

ds2 = v
(
dη2 + sinh2 η dθ2

)
,

F (i)
θη = iei sinh η

→ A(i)
θ = i ei (cosh η−1) = i ei (r−1) .
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Classical supergravity partition function:

ZAdS2
( e−A, A = Euclidean action

Since AdS2 has infinite volume, A would be
infinite.

We regularize by putting a cut-off at:

η = η0 → r = cosh η0 = r0

→
∫ √

det g dr dθ = 2π v (r0−1)
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Result

Abulk = −(r0−1)2πvL(2)

Aboundary = −Kr0 +O(r−1
0 )

K: some constant which depends on the de-
tails of the boundary terms.

This gives

ZAdS2
( e−Abulk−Aboundary

= er0(2πvL(2)+K)−2πvL(2)+O(r−1
0 )

in the classical limit.
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ZAdS2
= er0(2πvL(2)+K)−2πvL(2)+O(r−1

0 )

The term in the exponent proportional to r0
can be removed by choosing appropriate bound-
ary counterterms.

The r0 independent piece is what we shall call
ZAdS2

("e).

Thus our proposal reduces to

e−2πvL(2)("e) =
∑

"q

dmicro("q) e−2π"e·"q
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e−2πvL(2)("e) =
∑

"q

dmicro("q) e−2π"e·"q

In classical limit the r.h.s. is sharply peaked,
and we get

−2πvL(2)("e) = ln dmicro("q)− 2π"e · "q
at

∂ ln dmicro("q)/∂qi = 2πei

Compare this with Wald entropy

Swald("q) = 2π("e · "q − vL(2))

→ Swald("q) = ln dmicro("q)
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Expected form of ZAdS2
in the full quantum

theory

ZAdS2
("e) = e

Cr0−2πvL(2)
eff("e)

L(2)
eff : ‘effective lagrangian density’ evaluated

in the AdS2 background

– can be calculated using perturbation theory.

19



AdS2/CFT1 correspondence

By the usual AdS/CFT correspondence we would
expect that string theory on AdS2 should be
equivalent to a CFT1 at the boundary r = r0
of AdS2.

ZCFT1
= ZAdS2

We shall now analyze ZCFT1
.
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Conventionally one uses units in which the size
of the boundary is fixed but the UV length cut-
off is of order 1/r0.

We shall use a convention in which the UV
cut-off is fixed but the size of the boundary is
of order r0.

Parametrize the boundary by

w ≡ r0θ

w has period 2π r0.
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At r = r0

ds2 = v (dη2 + dw2) +O(r−2
0 ), w ≡ w + 2πr0

A(i)
w = i ei

(
1−r−1

0

)
.

Define

H: generator of w translation in CFT1 in the
r0 →∞ limit

Qi: Conserved charge dual to A(i)
µ in CFT1

Then

ZCFT1
= Tr

[
e−2πr0H−2πeiQi+O(r−1

0 )
]
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ZCFT1
= Tr

[
e−2πr0H−2π"e· "Q+O(r−1

0 )
]

ZAdS2
("e) = e

Cr0−2πvL(2)
eff("e)+O(r−1

0 )

Compare the two in the r0 →∞ limit:

→ if the ground state energy of H is E0 and
there are d("q) ground states of charge "q then

e−2πE0r0
∑

"q

d("q) e−2π"e·"q = e
Cr0−2πvL(2)

eff("e)
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e−2πE0r0
∑

"q

d("q) e−2π"e·"q = e
Cr0−2πvL(2)

eff("e)

⇓

E0 = −C/(2π),
∑

"q

d("q) e−2π"e·"q = e
−2πvL(2)

eff("e)

Compare with our proposal:

e
−2πvL(2)

eff("e) =
∑

"q

dmicro("q) e−2π"e·"q

Thus our proposal amounts to equating the
ground state degeneracies of CFT1 living on
the boundary of AdS2 with the black hole mi-
crostate degeneracies.
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Special case: Type IIA on CY3

In this case ZAdS2
may be computable due to

SUSY.

Recall:

ZAdS2
( e

−2πvL(2)
eff

after removing cut-off dependent terms.

If we evaluate vL(2)
eff using only the F -type terms

in the effective action then

ZAdS2
( e

−2πvL(2)
eff = |Ztop|2
Ooguri, Strominger, Vafa

Beasley, Gaiotto, Guica, Huang, Strominger, Yin
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Quantum corrections should be strongly con-
strained due to SUSY.

Expect

ZAdS2
= |Ztop|2 × simple measure factor

It may not be impossible to calculate this com-
pletely.

We can then compare this with Zmicro("e) when
the latter is known.
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Summary

1. Proposal for relating the extremal black hole
entropy to the microscopic degeneracy

ZAdS2
("e) =

∑

"q

dmicro("q) e−2π"e·"q

– reduces to the relation between wald entropy
and statistical entropy in the classical limit.

– in the spirit of AdS/CFT correspondence.

2. It may be possible to subject this to pre-
cision tests for supersymmetric black holes for
which the microscopic degeneracies are known.
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