An overview of new results from the ATLAS Heavy Ion Physics Program

Prof. Brian. A Cole Columbia University

for the ATLAS collaboration

An overview of new results from the ATLAS Heavy Ion Physics Program

Prof. Brian. A Cole Columbia University

for the ATLAS collaboration

The ATLAS Detector

Centrality in Pb+Pb, p+Pb

3.2 < |ŋ| < 4.9

100

ATLAS Preliminary

p+Pb, $\sqrt{s_{NN}}$ = 5.02 TeV, L_{int} = 1 µb⁻¹

200

 ΣE_{T}^{Pb} [GeV]

 Measured using forward calorimeter(s) - In p+Pb, on Pb-going side only ⇒Note: ATLAS p+Pb measurements now use "usual" convention (positive n in proton direction) For Pb+Pb usual Glauber MC for geometry For p+Pb use both Glauber and Glauber-Gribov color-fluctuation model a la Strikman et al.

Physics Goals

- Study the strongly coupled quark gluon plasma using both soft and hard probes
 - Study the collective response of the plasma to (fluctuating) initial conditions (flow).
 - Study modification of energetic parton showers by the plasma (jet quenching)
 - Calibrate both in proton-lead collisions.
 - ⇒Themes: improving precision, exploring new directions

Collective dynamics in Pb+Pb and p+Pb(?) collisions

Pb+Pb v_n via cumulants

p_T-differential measurements

⇒Good agreement between three experiments

Derendarz: Correlations and fluctuations: 1

Pb+Pb v_n via cumulants

p_T-differential measurements

⇒Good agreement between three experiments

Pb+Pb v_n via cumulants

p_T-differential measurements

\Rightarrow Good agreement between 3 experiments on v₂

\Rightarrow Significant, smaller v₃{4}, v₄{4}

Pb+Pb vn via cumulants

different methods measure different "v_n"s (fluctuations)

compare cumulant vn's to eventby-event calculations of same

Good consistency between cumulant results and published ATLAS event-by-event measurements

Event plane angle correlations

• Measure event plane angles, Φ_n , event -byevent using ATLAS calorimeter (arXiv:1403.0489) – Evaluate $\langle \cos(jk [\Phi_n - \Phi_m]) \rangle$

- Compare to Glauber: poor agreement

Event plane angle correlations

• Measure event plane angles, Φ_n , event -byevent using ATLAS calorimeter (arXiv:1403.0489) – Evaluate $\langle \cos(jk [\Phi_n - \Phi_m]) \rangle$ – Compare to AMPT: good agreement

Event plane angle correlations (3)

 Results for all 2, 3-plane correlations agree poorly with Glauber, well with AMPT
 ⇒ Significant non-linear flow contributions to higher order harmonics

vn correlations

- Study correlations between v_n 's using twoparticle correlations with $|\Delta \eta| > 2$
- Plot correlation of (e.g.) v₂ and v₂, v₃, v₄, v₅ values in different 5% centrality bins

⇒non-monotonic variation
 ⇒Role of finite viscosity in peripheral collisions?

Mohapatra: Collective dynamics: 4

Event v₂-selected results

 Fix initial geometry via centrality, select events according to elliptic flow vector magnitude (q2)
 Measured in FCals

V۵

15

 \Rightarrow Study two-particle correlations in $|\eta|$ < 2.5

v₂ (higher p_T)

V3

Studying flow non-linearity in v₄

v₂-v₄ correlations within centrality bins

• Fit to $\sqrt{c_0^2 + (c_1v_2^2)^2}$ to separate ϵ_4 - ("linear") and v₂- ("non-linear") driven contributions

Plot linear and non-linear components vs centrality

16

p+Pb v_n: overview

Use minimum-bias + high-multiplicity trigger data
Apply "improved" peripheral subtraction

Radhakrishnan: Correlations and fluctuations, 2

17

p+Pb 2-particle v_n(рт)

• Observe:

-significant values for n = 2,3,4,5 ⇒For n = 2,3 to 10 GeV

p+Pb 2-particle v_n(рт)

• Observe:

-significant values for n = 1,2,3,4,5

 \Rightarrow v₁ ~ v₃

p+Pb 2-particle v_n(рт)

• Observe:

- -significant values
 for n = 1,2,3,4,5
 - ⇒v₂ ~ constant at high multiplicity
 - ⇒v₃ increases over whole multiplicity range

Compare p+Pb, Pb+Pb vn

Right panels adjust p+Pb p_T scale by 4/5 to account for difference in <p_T> (Teany et al)

Pb+Pb v₂ and v₄ multiplied by 0.66 to match p+Pb

Compare p+Pb and Pb+Pb

⇒Good agreement between p+Pb and Pb+Pb when including p_T and v₂, v₄ rescaling

Hard probes: electro-weak bosons, jets

W[±] production in Pb+Pb collisions

• Measure

- $-W \rightarrow e^{\pm}v$
- $\, \bm{W} \rightarrow \! \mu^{\pm} \nu$
- + charged
- $\Rightarrow \mathbf{p}_{\mathsf{T}} > 3 \, \mathsf{GeV}$
- Yields well reproduced by POWHEG
 ⇒Data can not (yet) test nPDF effects

Grabowska-Bold: EM probes: 3

W[±] production in Pb+Pb collisions

Evaluate W[±] yield/N_{coll} vs N_{part} and W charge asymmetry (inclusive). Yields increase proportional to N_{coll} Charge asymmetry determined by isospin Additional data to further our understanding of hard scattering in Pb+Pb collisions.

Pb+Pb photon yields

Steinberg: Jets 2

Ratios of isolated, direct photon yields/T_{AA} to NLO pQCD calculation for p-p (JETPHOX1.3)
 – Also shown, JETPHOX for Pb+Pb: iso only, EPS09
 ⇒ Data not yet able to discriminate yet

Pb+Pb photon yields

 Forward (1.52<|η|<2.37) to central (|η|<1.37) yield ratios vs p_T

More sensitive test of isospin/PDF

- \Rightarrow Ratios well described by NLO pQCD
- ⇒Need better statistics to probe for isospin, nuclear PDF effects
 - » but we're getting close

Jet spectra: p+p and Pb+Pb

Absolutely normalized jet spectra:

2013 2.76 TeV p+p (left)
⇒ cross-section
2011 Pb+Pb (right)
⇒per-event yields

Angerami, Jets 1

Jet RAA

R_{AA} vs p_T and y

 in sub-set of
 measured
 centrality bins
 Fully unfolded

Observe

Factor of ~ 2 suppression up to jet p⊤ of 400 GeV
Slow increase with increasing jet p⊤
May vary with

centrality

Jet RAA: centrality and y dependence

RAA monotonically decreases vs Npart

⇒0.8 in 60-80%
⇒0.4 in 0-1% at lower jet p_T

No significant dependence on rapidity observed

 Even though both spectrum shape and q/g fractions vary with y
 ⇒Test of dE/dx calculations

Pb+Pb modified jet fragmentation

Spousta, Jets 3

Ratios of D(z) vs centrality to 60-80% bin

 In addition to features previously seen
 ⇒ Indication of an enhancement at large z

Pb+Pb modified jet fragmentation (2)

• Enhancement at large z or p_T clearer for:

-Smaller jet radii \Rightarrow R = 0.2, 0.3 -fragment pT spectrum, D(p_T) Observe ⇒enhancement makes it possible to preserve $\int dz \ z D(z)$

Pb+Pb: correlated nearby jets

 1st step in studying internal structure of parton showers

- -Measure nearby jet pairs ⇒Useful probe of relative quenching of correlated jets
- Measure (e.g.) conditional yield of jets associated with "test" jet

R = 0.4, 0.8 < R < 1.6

⇒Suppressed conditional yield of nearby jets \Rightarrow Interpretation needs theory calculations

Rybar, Jets 4

 $0.8 < \Delta R < 1.6$

120 E_{T}^{nbr} [GeV]

100

soft and hard particle production in p+Pb collisions

p+Pb Glauber(Gribov) analysis

 Evaluating implications of the Strikman et al Glauber-Gribov color fluctuations model for p+Pb centrality

<mark>p+Pb dN/d</mark>ղ

Interpretation of the p+Pb multiplicity data depends on choice of geometric model
 – Glauber-Gribov CF with Ω = 0.55 (ω_σ = 0.1) more "natural" (like wounded-nucleon)

Z production in p+Pb

Inclusive cross-sections

Combined cross-section

36
Z production in p+Pb

Inclusive cross-sections

Combined cross-section

Thursday, May 22, 14

p+Pb Z spectra: centrality dependence

- Plot 1/N_{coll} dN/dy in different p+Pb centrality bins
 - -Top: Glauber
 - Bottom: Glauber-Gribov CF, Ω = 0.55
 - ⇒Observe centrality dependence
 - ⇒Interpretation depends on the geometric model

Glauber-Gribov Ω = 0.55

p+Pb Z yields vs centrality

30

 $\langle N_{par'}$

 $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

0-90% Centrality

-2.5<y^z<2.5

20

□ (N_{coll}) Uncertainty
■ NNLO Prediction

Data

p+Pb Jet production

0-90% jet yields (left) and jet R_{pPb} (right)
 ⇒using 2013 p-p reference for R_{pPb}
 R_{pPb} compared to pQCD w/ EPS09 (Armesto)

Thursday, May 22, 14

Jet R_{CP}, R_{pPb}

As reported at Hard Probes

- ATLAS observes a strong variation in jet yield with centrality at high p_T or forward rapidities

⇒Scales with p = p_T × cosh(y) in forward direction

 \Rightarrow Depends on x_p ?

Perepelitsa, Jets 2

Thursday, May 22, 14

Jet R_{pPb}

If inclusive R_{pPb} ~ 1 and R_{CP} shows such effects, necessarily
peripheral enhancement
central suppression
⇒Exactly what we observe in the R_{pPb}
⇒?!??

• This was also observed in preliminary PHENIX jet measurement.

p+Pb jets: geometric explanation?

- Proton spatial configuration (size) depends on x of quark entering hard scattering
 - ⇒protons w/ large(r) x partons have a reduced soft cross-section

Calculation:

Alvioli, Frankfurt, Strikman arXiv:1402.2868

- Reduced cross-section for proton shifts N_{coll} distribution to smaller values
 - ⇒Suggestive, but conditional probabilities are "backwards" compared to data ...
 - ⇒Calculation analogous to data underway.

p+Pb charged particle R_{pPb}

 p-p charged particle cross-section measured at 2.76 TeV, 7 TeV, interpolated to 5.02 TeV

- Three different interpolation methods tested
- R_{pPb} measured for 0-90% and as a function of centrality, in different y* intervals

Balek, Jets 2

ΔΔ

- Results here for 0-90%
 - ⇒<u>Confirm CMS observation!?</u>

Summary: soft probes

• Pb+Pb:

⇒consistency between cumulant and previous event-byevent flow measurements.

 $\Rightarrow \Phi_n$ and v_n correlations show non-linear flow effects • p+Pb:

⇒Measure significant v_1 - v_5 , out to 10 GeV for v_2 , v_3 ⇒Same v_2 , v_3 , v_4 shapes v_5 p_T for p+Pb, Pb+Pb

Thursday, May 22, 14

Summary: hard probes

New electro-weak boson measurements ⇒Constraints on hard scattering rates
New jet R_{AA} to 400 GeV, vs y, down to 0-1% ⇒factor of ~ 2 suppression continues to 400 GeV
Update jet fragmentation: enhancement @ large z
First look at nearby jets in parton showers

Summary: p+Pb production

Z yields and Z/N_{chg} vs centrality make sense
⇒ starting to see clarity on p+Pb centrality?
p+Pb jets show unexpected(?) behavior
⇒Strikman et al: proton configuration size depends on x
ATLAS shows enhanced charged particle R_{pPb} at high p_T
⇒???

ATLAS conference notes

NEW	Measurement of the production of neighbouring jets in lead-lead collisions at vs _{NN} = 2.76 TeV with the ATLAS detector	ATLAS-CONF-2014- 028
NEW	Collective flow with higher-order cumulants in lead-lead collisions at vs _{NN} =2.76 TeV with the ATLAS detector at the LHC	ATLAS-CONF-2014- 027
NEW at the L	Centrality, rapidity and pT dependence of isolated prompt photon production in lead-lead collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with the ATLAS detector LHC	ATLAS-CONF-2014- 026
NEW	Measurements of the nuclear modification factor for jets in Pb+Pb collisions at sqrt{NN}=2.76 TeV with the ATLAS detector	ATLAS-CONF-2014- 025
NEW	Centrality and rapidity dependence of inclusive jet production in vis _{NN} =~5.02~TeV protonlead collisions with the ATLAS detector	ATLAS-CONF-2014- 024
NEW	Measurement of W boson production and the lepton charge asymmetry in Pb+Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV with the ATLAS detector	ATLAS-CONF-2014- 023
NEW	Elucidating the event-shape fluctuations via flow correlations and jet tomography studies in 2.76 TeV Pb+Pb collisions using the ATLAS detector	ATLAS-CONF-2014- 022
NEW ATLAS	Measurement of the long-range pseudorapidity correlations and associated Fourier harmonics in √s _{NN} =5.02 TeV proton-lead collisions with the detector	ATLAS-CONF-2014- 021
NEW	Measurement of the Z-boson production in pPb collisions at vs _{NN} =5.02TeV with the ATLAS detector	ATLAS-CONF-2014- 020

ATLAS conference notes can be found at – <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/</u> <u>HeavyIonsPublicResults</u>

Stay tuned for following publications at

-https://twiki.cern.ch/twiki/bin/view/AtlasPublic

p_T-Integrated v2

 Use 2-point tracklet and other low-pT tracking algorithms

⇒Measure v₂
 down to 70 MeV
 ⇒Improved precision

on integrated v₂

Evaluate centrality dependence

⇒Good agreement between 2 methods

⇒Good agreement w/ CMS for p_T > 300 Mev

p+Pb charged particle R_{pPb}

• Enhanced R_{pPb} seen in all centrality bins.

R_{CP} (integrated over y*) shows similar features as the jet R_{CP}

p+Pb charged particle R_{pPb}

p-p charged particle cross-section measured at 2.76 TeV, 7 TeV, interpolated to 5.02 TeV – Three different interpolation methods tested
R_{pPb} measured using PYTHIA baseline shows same result obtained with interpolated p-p.

Event plane angle correlations (2)

Also measure multi-plane correlations

- -Generally $\langle \cos\left(c_1\Phi_1+2c_2\Phi_2+...+lc_l\Phi_l
 ight)
 angle$
 - \Rightarrow with $c_1+2c_2+...+lc_l=0$

- In particular, 34-plane correlations

- $\Rightarrow \langle \cos\left(c_1\Phi_1 + 2c_2\Phi_2 (c_1 + 2c_2)\Phi_3\right) \rangle$
- -Also poor agreement with Glauber

 $\langle \cos\left(2\Phi_2+4\Phi_4-6\phi_6\right) \rangle$

$$\langle \cos\left(2\Phi_2+3\Phi_3-5\phi_5
ight)$$

 $\left<\cos\left(2\Phi_2-6\Phi_3+4\phi_4
ight)
ight>$

 $\langle \cos\left(-10\Phi_2+4\Phi_4+6\phi_6
ight)
angle$

Charged particle Rppb

Good agreement on (almost) minimum-bias charged particle RpPb ⇒Beware differences in event selection

p+Pb 2-particle correlations

 Good statistical precision on development of the ridge(s) out to high event multiplicities

Thursday, May 22, 14

Peripheral subtraction

 Apply peripheral subtraction to remove recoil contribution

Integrate v₂ vs η

Pb+Pb W: control distributions

Pb+Pb nearby jets: R = 0.3

Pb+Pb nearby jets: analysis

 Result for the differential neighboring jet yield at various stages of the analysis (lowest p_T)

Thursday, May 22, 14

Charged R_{pPb}

Thursday, May 22, 14

61

p+Pb v1

- Observe non-zero v₁₁ in p+Pb collisions
 - Similar to Pb+Pb, changes sign with increasing pT
 - Extract v₁ using same procedure applied to Pb+Pb
 - ⇒Observe that v₁ factorizes
 - ⇒Evolution from negative v₁ below ~ 2 GeV to positive above

Jet RAA: Rapidity dependence

- Why should we expect a y dependence?
 - -y dependence of primordial parton spectrum:
 - ⇒jet spectrum steeper with increasing y
 - -variation of quark/gluon ratio
 - ⇒q/g increases with increasing y

 Observe no systematic variation with y
 ⇒Theory?

Event plane angle correlations

- Measure event plane angles, Φ_n , event -byevent using ATLAS calorimeter (arXiv:1403.0489) – Evaluate $\langle \cos(jk [\Phi_n - \Phi_m]) \rangle$ \Rightarrow corrected for event plane resolution. \Rightarrow In 5% bins of centrality + 1% bins over 0-5%
 - Compare to Glauber only (here)

⇒Poor agreement

 $\langle \cos\left(4\left[\overline{\Phi}_2-\Phi_4
ight]
ight)
angle ~~ \langle \cos\left(8\left[\overline{\Phi}_2-\Phi_4
ight]
ight)
angle ~\langle \cos\left(12\left[\overline{\Phi}_2-\Phi_4
ight]
ight)
angle ~~ \langle \cos\left(6\left[\overline{\Phi}_2-\Phi_3
ight]
ight)
angle$

64

<u>Cumulant v₂ vs η</u>

Cumulant, E-by-E v₂

 Comparison of 2, 4, 6particle cumulant vn values to those calculate using e-by-e measurements

Cumulant, E-by-E v₂ (2)

Comparison between v₂{4}, v₂{6}, v₂{8}

- -Left: cumulants
- -Right: event-by-event
 - ⇒Good agreement
 - ⇒Probe of flow fluctuations

Cumulant, v₃, v₄ fluctuations

 v₃ and v₄ fluctuations agree well with the event-by-event results
 ⇒Not described by Glauber or MC-KLN

<mark>Cumulant v₃, v₄ vs η</mark>

 η dependence of v3, v4 averaged over large centrality interval

 OK, because weak dependence on centrality

Cumulant, v₂ fluctuations

 Evaluate flow fluctuations using the cumulant and (previous) event plane "v₂"

$$\mathsf{F} = \sqrt{\frac{\mathsf{v}_2 \{\mathsf{EP}\}^2 - \mathsf{v}_2 \{4\}^2}{\mathsf{v}_2 \{\mathsf{EP}\}^2 + \mathsf{v}_2 \{4\}^2}}$$

Cumulant, e-by-e v₂

 Comparison of 2, 4, 6particle cumulant vn values to those calculate using e-by-e measurements

Pb+Pb photons, ID, purity

Thursday, May 22, 14

72
Jet RCP comparison

Pb+Pb Jet spectra

Pb+Pb jet RAA vs Npart

p+Pb R_{pPb} scaling

scaling with p_T cosh(y) less clean in R_{pPb}

 Errors larger, p-p interpolation, p+Pb y shift, ...
 ⇒but still present for both peripheral and central collisions

Pb-Pb vn correlations

v_n vs q₂ for v₃, v₄, v₅ in different centrality bins

Pb+Pb q₂-selected 2-particle correlations

Pb+Pb vn scaling, decomposition

Evaluation of vn scaling, with and without the non-linear flow contribution

Thursday, May 22, 14

Pb+Pb q₂-selected v_n(pT)

Thursday, May 22, 14

p+Pb 2-particle $\Delta \phi$ vs p_T

 Clearly see the symmetric ridges even for pT > 9 GeV!

Peripheral subtraction

Scale up the peripheral conditional yield to match more central bin in the jet peak

82

Thursday, May 22, 14