1. Introduction

1. In heavy-ion collisions, the particle distribution in azimuthal is usually expressed in terms of a Fourier series:

\[dN/d\phi \propto 1 + 2 \sum_{n=1} v_n \cos n(\phi - \phi_0) \]

and linear hydro-response from eccentricity vector \(\vec{\varepsilon}_n = \varepsilon_n e^{in\phi_0} \) is assumed for elliptic and triangular flow \(\vec{v}_n = n e^{in\phi_0} \)\(^{(n=2,3)} \) [1].

2. Since the FB asymmetry \(\varepsilon^F \) is more correlated with \(n=3 \) in forward rapidity, we estimate the size of initial fluctuation in Glauber model and quantify the \(\varepsilon^F \) fluctuation using AMPT model.

2. A simple model based on the Glauber model

1. Wounded nucleon mode

The emission function \(f(\eta) \) of the participant is asymmetric along its moving direction, and \(f^{+/−}(\eta) \) reaches its peak at \(f(\eta) = \pm 2 \) [2].

2. In Glauber model, the eccentricity vectors \(\varepsilon^F, \varepsilon^B \) (n=2,3) exhibit a large FB asymmetry in their magnitude, and a sizable twist in angle.

3. We naturally expect the deficit \(\eta^F, \eta^B \) to interполate between \(\varepsilon^F \) and \(\eta^F \) and thus we get:

\[\varepsilon^F(\eta) \propto \varepsilon^B(\eta) \approx \alpha(\eta) \varepsilon^F(\eta) \]

\[\alpha(\eta) = f(\eta)/f^{+/−}(\eta) \]

since the density profile is controlled by participants from the two nuclei, which is rapidly dependent [3].

3. Expectations:

Thus these generic initial fluctuations can survive the collective expansion and we expect:

1. FB asymmetry of \(\varepsilon^F(\eta) \)
2. A twist of final state event plane angles \(\Phi_\eta(\eta) \)

4. Analysis with the AMPT model

AMPT model

1. Glauber+HIJING+transport.
2. Contains longitudinal fluctuations and collective flow

- FB asymmetry \(\varepsilon^F \) survives Magnitude of flow vector \(Q^F \) in forward rapidity \(\eta \in (4.6) \) is more correlated with \(\varepsilon^F \) than \(\varepsilon^B \) and is similar for \(n=3 \)

5. Selecting different initial longitudinal configurations

- To better study how the initial longitudinal configurations influence the final \(\varepsilon^F(\eta) \), we select 3 classes of events with different fluctuations between \(\varepsilon^F \) and \(\varepsilon^B \)

- Then measure harmonic flow relative to the participant planes: \(\varepsilon^F(\eta) = \langle \cos n(\phi (\eta) - \phi_0) \rangle \)

6. Results

Type 1

- Initial: \(\varepsilon^F = \varepsilon^B \), \(\Phi^F = \Phi^B \)
- Final: symmetric \(\varepsilon^F(\eta) \), no twist

Type 2

- Initial: \(\varepsilon^F = \varepsilon^B \), \(\Phi^F = \Phi^B \)
- Final: \(\varepsilon^F(\eta) \), FB asymmetry, no twist

Type 3

- Initial: \(\varepsilon^F = \varepsilon^B \), \(\Phi^F = \Phi^B \)
- Final: twist observed!

Inclusive

- The twist leads to EP decorrelation in rapidity. \(\varepsilon^F(\eta) \) decreases when it is away from reference EP

Conclusion

1. By using event shape engineering [4] and “event-shape twist” method [5], the FB asymmetry \(\varepsilon^F(\eta) \) and/or twist of event-plane angles are observed for events with a certain selection criteria.

2. If similar effects can be observed in RHIC and LHC data, it could greatly improve our understanding of the space-time evolution of heavy ion collisions

References: