

# Quartetting in fermion systems with differing chemical potentials

Mark Alford<sup>1</sup>, Kai Schwenzer<sup>1</sup> and Andreas Windisch<sup>2</sup> <sup>1</sup> Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130, USA <sup>2</sup> University of Graz, Universitätsplatz 5, 8010 Graz, Austria, Europe



### **Differing Fermi Momenta - General Aspects**





• ultracold atom systems

solids

Chandrasekhar [1] and Clogston [2]:

## $\delta \mu_{\rm crit} = \frac{\Delta 0}{\sqrt{2}}$

## **Crystalline Condensation (LOFF)**

Independently published by Larkin and Ovchinnikov [5], as well as **Fulde and Ferrell [6].** 

- Near  $\delta \mu_{crit}$ : LOFF condensate  $(\mathbf{q} + \mathbf{p}, \mathbf{q} - \mathbf{p})$  favored
- translational and rotational not invariant
- Condensate varies as plane wave with 2q

• crystalline structure,

 $\Delta(\mathbf{r}) = \cos(2\mathbf{q} \cdot \mathbf{r})$ 

• quark matter

$$\delta \mu = \delta \mu_{crit}$$
: 1<sup>st</sup> order

• neutron stars

#### **Deformed Fermi Surfaces (DFS)**



**Proposed by Müther and Sedrakian, see [3] and [4].** 

Left: Deformed fermi surfaces,  $\mu_{f} = \bar{\mu}_{f} (\mathbf{1} \pm \varepsilon_{A} \sin^{2} \theta)$ 

*Right:* Free energy DFS vs. LOFF. *Is DFS the true ground state?* 

#### LOFF in QCD

*Left:* The role of LOFF in QCD has been investigated by Alford, Bowers and Rajagopal [7]. *Right:* A pulsar glitch [8].



Crystalline LOFF condensation might indicate the presence of quark matter in the interior of neutron stars by offering an explanation for glitches (observable sudden spin-up of a star).

#### Fermion Quartetting: Bosonized Theory

#### Four fermion condensation?

**RG-scaling of couplings.** 



#### weak coupling, $\delta \mu \ll \Delta$

- $\langle qq \rangle$  : marginal
- (qqqq) : irrelevant

weak coupling,  $\delta \mu \gtrsim \Delta$ 

- $\langle qq \rangle$  : irrelevant
- (qqqq) : irrelevant

strong coupling,  $\delta \mu \gtrsim \Delta$ 

- $\langle qq \rangle$  : suppressed
- (qqqq) : **?**

Why quartetting? At large mismatch ( $\delta\mu$ ) BCS pairing is kinematically suppressed, while a quartet can overcome this restriction.

## Fermion Quartetting: Toy model SU(2), 8 SU(2)

 $\mathscr{L} = \bar{\psi}^{\alpha}_{A} \left( \delta_{\mu} - (\mu + \delta \mu \sigma_{3}) \gamma^{4} + m \right) \psi^{\alpha}_{A} + \frac{1}{2} \left( \left| \partial_{\mu} \Xi \right| \right)^{2} + \frac{1}{2} \left( \left| \partial_{\mu} \Theta \right| \right)^{2}$  $+\frac{m_{\Theta}^{2}}{2}\Theta_{AB}^{\alpha\beta}\varepsilon_{ijkl}c_{\alpha A}^{i}c_{\beta B}^{j}c_{\gamma C}^{k}c_{\delta D}^{l}\Theta_{CD}^{\gamma\delta}$  $+\frac{g_{\Theta}^{\gamma}}{2}\sqrt{\Xi^{*}} \varepsilon_{ijkl}c_{\alpha A}^{i}c_{\beta B}^{j}c_{\gamma C}^{k}c_{\delta D}^{l}\Theta_{AB}^{\alpha\beta}\psi_{C}^{\gamma}\psi_{D}^{\delta}$  $+\frac{g_{\Theta}^{\gamma}}{2}\sqrt{\Xi}\varepsilon_{ijkl}c_{\alpha A}^{i}c_{\beta B}^{j}c_{\gamma C}^{k}c_{\delta D}^{l}\Theta_{AB}^{\alpha\beta}\bar{\psi}_{C}^{\gamma}\bar{\psi}_{D}^{\delta}$  $+U(|\Xi|) + g|\Xi||\Theta|^2 + m|\Theta|^2$ 

### New fields after bosonization



- *Name:* **Ξ** • Species: Boson • Occupation:
- complex scalar
- Represents:
- **4-fermion condensate**





## $T^{\alpha\beta\gamma\delta}_{ABCD} = \varepsilon_{ijkl} c^{i}_{A\alpha} c^{j}_{B\beta} c^{k}_{C\gamma} c^{l}_{D\delta},$

where each  $c_{A\alpha}^i$  picks one representative out of  $SU(2)_c \otimes SU(2)_f$ .





| Acknowledgments                                  | <b>References</b>                                                                            |                                                                                                                 |
|--------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                  |                                                                                              | [5] A. I. larkin and Y. N. Ovchinnikov, Zh. Eksp. Teor. Fiz. 47 (1964) 1136 [Sov. Phys. JETP 20<br>(1965) 762]. |
| AW is supported by the Doctoral Program "Hadrons | [1] B. Chandrasekhar, App. Phys. Lett. 1 (1962) 7.                                           | [6] P. Fulde and R. A. Ferrell, Phys. Rev. <b>135</b> (1964) A550.                                              |
| in Vacuum, Nuclei and Stars", funded by the      | [2] A. M. Clogston, Phys. Rev. Lett. <b>9</b> (1962) 266.                                    | [7] M. G. Alford, J. A. Bowers and K. Rajagopal, Phys. Rev. D 63 (2001) 074016 [hep-                            |
| Austrian Science Fund FWF, contract W1203-N16.   | [3] H. Muther and A. Sedrakian, Phys. Rev. Lett. <b>88</b> (2002) 252503 [cond-mat/0202409]. | [9] R.M.McCullooh, A.R.Klekoojuk, R.A. Hemilten and G.W.R. Royle, Aust. J. Rhys. 40 (1987)                      |
|                                                  | [4] H. Muther and A. Sedrakian, Phys. Rev. D 67 (2003) 085024 [hep-ph/0212317].              | $725 \hat{a} \hat{L} \hat{S} \hat{S} \hat{S} \hat{S} \hat{S} \hat{S} \hat{S} S$                                 |

and A. Sedrakian, Phys. Rev. D **67** (2003) 085024 [hep-ph/0212317].

index A index  $\alpha$