

XXIV QUARK MATTER DARMSTADT 2014

Heavy-flavor muon production at forward rapidity in d+Au collision at sqrt(s_{NN})=200 GeV

> Sanghoon Lim (Yonsei Univ.) for the PHENIX collaboration

PHXENX

Motivation

Measuring muons from semi-leptonic decay of heavy-flavor mesons (D & B)

>p+p collision

- reference for p+A and A+A collisions
- test of pQCD calculation

PHENIX muon spectroscopy

PHENIX muon arms are composed of the Muon Trackers and the Muon Identifiers to measure hadron/muon tracks at forward rapidity region

Muon Tracker

3 stations of cathode strip

d+Au collision

- study cold nuclear matter effects
- comparison to heavy-ion results

CNM effects

- modification of parton distribution function
- nuclear p_T broadening
- initial-state energy loss
- nuclear break-up of quarkonia

- chambers
- momentum measurement

[•] Muon Identifier

- 5 interleaved layers of steel absorber and 2 larocci tube planes
- hadron muon separation (~10⁻³ pion rejection rate)

Analysis overview

Source of tracks at muon arm

- Prompt muon muons from semileptonic decay of heavy-flavor (D & B) mesons
- Decay muon muons produced from the decay of light hadrons(π , K) before interaction with the absorber dominant background component at p_T below 3.0 GeV/c and shows clear linear z-vertex dependence of its production

- > Punch-through hadron hadrons surviving from nuclear interaction with the absorber and penetrating all MuID gaps
- Stopped hadron hadrons stopped at the MuID Gap-2 or 3 due to interaction with absorber material important constraint for accurate background
 - estimation by matching simulation to data

Nuclear modification factor, RdA(φτ)

Comparison to J/ψ

ŀ	0-20% centrality											
٥	-											
Ю	1	2	3	4	5	6	7					
					p __ (GeV/c)							

	I. Vit	ev (shad	owing, ĸ	broader	ning, CNN	I E-IOSS)			
0 <u> </u>	1	2	3	4	5	6			
					p	p __ (GeV/c			

- PYTHIA + EPS09s LO, D→μ ● HF μ⁻, -2.0 < y < -1.4

0-100% centrality

An enhancement (suppression) has been observed at backward (forward) rapidity region in most central d+Au collisions

 \triangleright pQCD calculation considering shadowing, nuclear p_T broadening, and energy loss agrees well with the data at forward rapidity

> Theoretical approaches, PYTHIA + EPS09s nPDF parameterization and the same calculation including k_T broadening can not simultaneously describe the data at both rapidity regions from central d+Au collisions

possibility of the enhancement by final-state interaction at higher parton-density backward rapidity (ref.: Phys. Rev. Lett. 93, 082302)

Comparison between J/ψ results (Phys. Rev. C 87, 034904) and heavy quark production provides an insight on role of nuclear break-up effect on quarkonia production

Difference is seen only at backward rapidity region in most central d+Au collisions

 \rightarrow significant nuclear break-up by interacting with larger density of co-moving particles (ref. for multiplicity in d+Au : Phys. Rev. Lett. 93, 082301)