Measurement of momentum flow relative to the dijet system in PbPb and pp collisions

Doga Gulhan
(MIT)
for the CMS Collaboration

Quark Matter conference, Darmstadt
21st May, 2014
Motivation

- Increase in asymmetry of dijet pairs in central events
 - Translates into 10% decrease of $<p_{T,2}/p_{T,1}>$
 - $\Delta p_{T} \approx 10\text{ GeV}/c$ more compared to leading jet

- Balance is not recovered inside a cone of $\Delta R<0.8$.
- PbPb Dijet imbalance is balanced by out-of-cone low p_T particles

NEW

- Measurement of missing p_T differential in ΔR
- What is the angular shape, p_T composition and multiplicity of the balancing spectrum?
Datasets and event selection

DATA

pp
- 2.76 TeV
- 5.3 pb$^{-1}$
- High p_T trigger
 - A jet with $p_T > 80$ GeV/c
- Track reconstruction:
 - 7 iterations,
 $p_T > 0.2$ GeV/c
- Jet reconstruction
 - Anti-k_T Calo $R=0.3$

PbPb
- 2.76 TeV
- 150 μb$^{-1}$
- High p_T trigger
 - A jet with $p_T > 80$ GeV/c
- Track reconstruction:
 - 3 iterations,
 $p_T > 0.4$ GeV/c
- Jet reconstruction
 - Anti-k_T Calo $R=0.3$
 - HF/Voronoi subtraction

MC

- PYTHIA simulation with same reconstruction as pp data.
- PYTHIA sample embedded into a HYDJET background with heavy ion reconstruction as in PbPb data.

• **Dijet selection:**
 - $p_{T,1} > 120$ GeV/c
 - $p_{T,2} > 50$ GeV/c
 - $|\eta_1|, |\eta_2| < 1.6$ (0.5)
 - $\Delta\phi > 5\pi/6$

• **Charged particles:**
 - $p_T > 0.5$ GeV/c
 - $|\eta| < 2.4$

Yue Shi Lai
Poster Session
Yesterday
Performance of HF/Voronoï UE subtraction

Sum of E_T of UE subtracted calo towers that fall in $R=0.3$ in random directions in MB events:

Mean random cone E_T as a function of η:

Good agreement between data and MC

Deviation from zero <0.5-1 GeV

CMS-PAS-HIN-14-010
Track corrections

• Tracks are corrected for reconstruction efficiency, fake rate (both in pp and PbPb) and secondary particles (in pp).

• After the corrections reconstructed track distributions agree with generator-level charged particle distributions in:
 – η
 – ϕ
 – p_T
 – Distance to a jet axis
 – centrality
Multiplicty difference

Direction of the dijet is defined as:

\[\phi_{\text{dijet}} = \frac{1}{2}(\phi_1 + (\pi - \phi_2)) \]

Different than in PRC 84 (2011) 024906 where the axis of projection is the leading jet direction.

This change provides UE cancellation differential in \(\Delta R \).

What is the **multiplicity** of particles that balance the “extra” lost \(p_T \)?

\[\Delta_{\text{mult}} = \begin{array}{c}
\text{Number of charged particles in hemisphere 2} \\
\text{Subleading jet}
\end{array} - \begin{array}{c}
\text{Number of charged particles in hemisphere 1} \\
\text{Leading jet}
\end{array} \]
Results - Multiplicity difference vs. A_J

Multiplicity difference (in acceptance) increases as a function of A_J.

- The increase is larger in PbPb.
- The enhancement in PbPb compared to pp increases with centrality.
 - Large A_J, 0-10% → 15 extra particles.

$A_J = (p_{T,1} - p_{T,2})/(p_{T,1} + p_{T,2})$
What is the multiplicity and spectrum of particles that balance the “extra” lost p_T?

Calculate the missing p_T for charged particles in different p_T ranges

$$\nu_T^\parallel = \sum_i -p_T^i \cos (\phi_i - \phi_{Dijet})$$
Results - Missing p_T vs. A_J

- Access to high p_T particles increases as a function of A_J
- In pp \rightarrow Balanced by 2-8 GeV/c particles
- In PbPb \rightarrow Balanced by particles with $p_T < 2$ GeV/c
What is the **angular distribution** of these particles with respect to the dijet system?

Calculate the missing p_T for charged particles that fall in slices of ΔR:

$$p_T^\parallel = \left(\sum_i -p_T^i \cos (\phi_i - \phi_{\text{dijet}}) \right) |R_{\text{down}} < \Delta R < R_{\text{up}}$$

$$\Delta R = \sqrt{\Delta \phi_{\text{Trk,jet}}^2 + \Delta \eta_{\text{Trk,jet}}^2}$$
Results - Missing p_T vs. ΔR

Inclusive A_J

High p_T imbalance at small ΔR

Balanced by low p_T particles in subleading jet direction

Extends up to large ΔR
Results - Missing p_T vs. ΔR

CMS-PAS-HIN-14-010

Already small enhancement of low p_T charged particles
Results - Missing p_T vs. ΔR

Enhancement of low p_T particles

PbPb 0-30%

PbPb –pp

Larger imbalance in PbPb

$A_J > 0.22$
Results - Missing p_T vs. ΔR

Difference in missing p_T in pp and PbPb above $\Delta R=0.4$ is <1 GeV.

$|\eta_1,|\eta_2|<0.50, A_J > 0.22$

$|\eta_{\text{tr}}|<2.4, \Delta \phi_{1,2}>5\pi/6$

$p_{T,1}>120, p_{T,2}>50$ GeV/c
Results - Missing p_T vs. ΔR

Shape of the balancing distribution in pp and PbPb is very similar

$A_J > 0.22$
Results - Missing p_T vs. ΔR

Shape of the balancing distribution in pp and PbPb is very similar.

After matching the missing p_T at $\Delta R<0.2$
Summary

• The dijet in-cone momentum imbalance is compensated by:
 – PbPb: Low p_T charged particles (0.5-2 GeV/c)
 – pp: Particles in the $p_T = 2$-8 GeV/c range

• A larger multiplicity of associated particles is seen in PbPb compared to pp.

• Small ΔR imbalance is balanced by low p_T particles in large ΔR. The excess of low p_T particles goes up to $\Delta R=1.8$.

• The angular shape of the balancing distribution agrees in PbPb and pp within systematic uncertainties, but the composition in p_T is different.
Projection axis choice

Leading jet axis

- $\Delta\phi_{1,2} \neq \pi$ → Projection of p_T of charged particles in small ΔR near subleading jet is smaller than those near leading jet

Dijet axis

- Restores the symmetry of particles near leading and subleading jet → UE cancels by azimuthal symmetry
Track corrections

CMS-PAS-HIN-14-010

Arbitrary units

PYTHIA+HYDJET
HI Tracking

PYTHIA
pp Tracking

Ratio

CMS Preliminary
Simulation

\[\text{gen. particle} \]
\[\text{reco. trk} \]
\[\text{corrected trk} \]

\(p_T \) (GeV/c)
Jet p_T scale and resolution comparison

Earlier subtraction algorithm

HF/Voronoi subtraction

CMS-PAS-HIN-14-010

CMS-HIN-12-004
• One can observe non-zero total missing p_T in generator level PYTHIA.
The reconstruction effects are slightly different for PYTHIA and PYTHIA+HYDJET, because of the different jet and track reconstruction used.
Generator-level overall missing p_T

CMS-PAS-HIN-14-010

- Missing p_T in truth level

PYTHIA:
- for all charged particles with $p_T > 0.5$ GeV/c within $|\eta|<2.4$
- for all charged particles with $p_T > 0.5$ GeV/c without $|\eta|<2.4$ selection
- for all charged particles without $p_T > 0.5$ GeV/c selection within $|\eta|<2.4$ selection
- For all charged particles
Summary of systematics (1)

Multiplicity difference \(v. A_J \)

<table>
<thead>
<tr>
<th>Jet reco and selection</th>
<th>pp</th>
<th>PbPb 50 - 100%</th>
<th>PbPb 30 - 50%</th>
<th>PbPb 10 - 30%</th>
<th>PbPb 0 - 10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track reco.</td>
<td>0.8</td>
<td>0.5 - 1.0</td>
<td>0.5 - 1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Residual JES</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Residual track corr.</td>
<td>0.2 - 0.7</td>
<td>0.1 - 0.7</td>
<td>0.1 - 1.0</td>
<td>0.1 - 1.2</td>
<td>0.1 - 1.5</td>
</tr>
<tr>
<td>Event selection</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>HCAL noise</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>< 0.1</td>
</tr>
<tr>
<td>Pile-up</td>
<td>< 0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Total Systematics: 1.1 - 1.5, 1.1 - 1.3, 1.2 - 1.7, 2.8 - 3.0, 3.3 - 3.5

JES, JER, fake jets, swapping of lead sublead jet

Missing p_T \(v. A_J \)

<table>
<thead>
<tr>
<th>Jet reco.</th>
<th>pp (GeV/c)</th>
<th>PbPb 50 - 100% (GeV/c)</th>
<th>PbPb 30 - 50% (GeV/c)</th>
<th>PbPb 10 - 30% (GeV/c)</th>
<th>PbPb 0 - 10% (GeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 - 5</td>
<td>3 - 4</td>
<td>3 - 5</td>
<td>2 - 3</td>
<td>2 - 4</td>
<td></td>
</tr>
<tr>
<td>0.5 - 2</td>
<td>1 - 4</td>
<td>2 - 4</td>
<td>1 - 3</td>
<td>1 - 3</td>
<td></td>
</tr>
<tr>
<td>2.1 - 5.4</td>
<td>4.1 - 5.7</td>
<td>3.6 - 6.4</td>
<td>2.2 - 4.2</td>
<td>2.2 - 5.0</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
<td>0.4</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Systematics: 2.2 - 5.5, 4.3 - 5.8, 3.7 - 6.5, 2.4 - 4.3, 2.4 - 5.1

Nonclosure in track correction
Summary of systematics (2)

Missing p_T v. ΔR for pp

<table>
<thead>
<tr>
<th>ΔR</th>
<th>< 0.2</th>
<th>$0.2 - 0.8(1.2)$</th>
<th>$> 0.8(1.2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_j All</td>
<td>4</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Jet reco.</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Track reco.</td>
<td>0.5</td>
<td>1.25</td>
<td>0.1</td>
</tr>
<tr>
<td>Residual JES</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2</td>
</tr>
<tr>
<td>Residual track corr.</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Pile-up</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>4.1</td>
<td>5.2</td>
<td>10.4</td>
</tr>
</tbody>
</table>

Missing p_T v. ΔR for PbPb

<table>
<thead>
<tr>
<th>ΔR</th>
<th>$< 0.8(1.2)$</th>
<th>$0.2 - 0.8(1.2)$</th>
<th>$> 0.8(1.2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_j All</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Jet reco.</td>
<td>1.5</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Track reco.</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Residual JES</td>
<td>0.8</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Residual track corr.</td>
<td>0.8</td>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>5.3</td>
<td>5.2</td>
<td>10.8</td>
</tr>
</tbody>
</table>

Missing p_T v. ΔR for PbPb-pp

<table>
<thead>
<tr>
<th>ΔR</th>
<th>< 0.2</th>
<th>$0.2 - 0.8(1.2)$</th>
<th>$> 0.8(1.2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_j All</td>
<td>2</td>
<td>1.5</td>
<td>2</td>
</tr>
<tr>
<td>Jet reco.</td>
<td>1.5</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Track reco.</td>
<td>2.2</td>
<td>1.8</td>
<td>2.5</td>
</tr>
<tr>
<td>Total reco.</td>
<td>0.2</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Residual JES</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Residual track corr.</td>
<td>0.4</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Pile-up</td>
<td>0.1</td>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Total</td>
<td>2.2</td>
<td>1.8</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Uncorrelated combination
Motivation

pp collisions

Compare pp and PbPb to constrain the energy loss mechanisms responsible of the enhancement of fraction of large A_J events in PbPb.

PbPb collisions

What is the angular distribution of these particles with respect to the dijet system?

What is the spectrum and multiplicity of particles that balance the “extra” lost p_T by subleading jet compared to leading jet?
What is the **multiplicity** and spectrum of particles that balance the “extra” lost p_T?

$$\phi_{\text{dijet}} = \frac{1}{2}(\phi_1 + (\pi - \phi_2))$$

$$\Delta_{\text{mult}} = N_{\text{trk}}^{\text{corr}} [\Delta \phi_{\text{dijet,trk}} > \pi/2] - N_{\text{trk}}^{\text{corr}} [\Delta \phi_{\text{dijet,trk}} < \pi/2]$$

Δ_{mult} = Number of charged particles in hemisphere 2 - Number of charged particles in hemisphere 1

Near Subleading jet
Near Leading jet
Results - Multiplicity difference vs. $\Delta p_{T,1,2}$

- Similar trend as a function of leading and subleading jet p_T difference
Large A_J selection enhances the fraction of subleading jets with significant energy loss.
Results - Missing p_T vs. ΔR

Larger imbalance in PbPb

Enhancement of low p_T particles

$|\eta_1, \eta_2|<0.50, A_J > 0.22$

$|\eta_{uk}|<2.4, \Delta \phi_{1,2} > 5\pi/6$

$p_{T,1}>120, p_{T,2}>50$ GeV/c

$A_J > 0.22$
Results - Missing p_T vs. ΔR

- $|\eta_1,|\eta_2|<0.50, A_J > 0.22$
- $|\eta_{tk}|<2.4, \Delta \phi_{1,2}>5\pi/6$
- $p_{T,1}>120, p_{T,2}>50$ GeV/c

ϕ_{dijet}, ϕ_1, ϕ_2
In-cone missing p_T
Out-of-cone missing p_T

- pp 5.3 pb$^{-1}$
- PbPb 150 μb$^{-1}$
- PbPb 0-30%

$\sqrt{s_{NN}} = 2.76$ TeV

- Out-of-Cone, $0.8 < \Delta R$
- PbPb - pp 30-100%
- PbPb - pp 0-30%

- $p_T^{\text{trk}} (|\eta|<2.4)$
 - 0.5 - 1.0
 - 1.0 - 2.0
 - 2.0 - 4.0
 - 4.0 - 8.0
 - 8.0 - 300.0
 - > 0.5

- $p_{T,1} > 120$ GeV/c
- $|\eta_1|,|\eta_2|<1.6$

- $p_{T,2} > 50$ GeV/c
- $\Delta\phi_{1,2} > 5\pi/6$