b-jet Nuclear Modification Factors in Heavy-Ion Collisions with CMS

Kurt Jung
[Purdue University]
for the CMS Collaboration

Quark Matter 2014: Darmstadt, Germany
Outline

• Motivation for heavy flavor analyses
• B-jet identification
• B-tagging performance
• B-jet R_{AA} measurements
• B-jet R_{pA}^{PYTHIA} measurements
 – Jet energy suppression?
 – Measurements of nuclear PDF?
• Conclusions

Since QM12...
• Enhanced pp statistics
• Fully unfolded and corrected spectra
 • R_{AA} measurements
 • R_{pA} measurements

Additional details found in CMS PASes HIN-12-003, HIN-14-007
Motivation for Heavy Flavor Studies

- Heavy quark measurements give a deeper understanding of the in-medium energy loss mechanisms
- pA in particular allows assessment of cold nuclear matter effects, independent of HI medium quenching
- Jets in particular are extremely useful:
 ✓ Provide a high-p_T heavy flavor probe
 ✓ Complementary to B-meson measurements

• This b jet measurement does not distinguish between different b-jet production mechanisms.
• NLO (through Herwig) predicts non-negligible contributions from all three production mechanisms in the p_T range that we measure:
 – Gluon can split anywhere from early to late in the collision -> convolutes energy loss measurements!
• This first LHC b-jet measurement is a critical starting point for the future:
 – di-b-jet and b jet-track correlations can shed additional light.
Identifying B-Jets

- Primary identification method is using a **Secondary Vertex**
 - Long lifetime of \(b = \text{mm or cm vertex displacement} \)
- Flight distance \((L_{xy}) \) of the secondary vertex used as a discriminating variable
- Tagging methods independent of secondary vertex reconstruction used as cross-check

B-quark decays are heavily CKM-suppressed \(\rightarrow \) Long lifetimes

Algorithms described in: *JINST 8 (2013) P04013*
• B-jet efficiency plotted against probability of misidentifying a light jets as a b-jet
Tagging Performance in Simulation

- B-jet efficiency plotted against probability of misidentifying a light/charm jet as a b-jet
- pPb and pp have identical reconstruction procedures ➔ very similar tagging performance
• Tagger working point is chosen such that the light jet rejection is approx. 99% for all collision species
Calculating the b-jet Fraction

\[\varepsilon_b = \frac{C_b f_b^{b\text{tag}} N_b^{b\text{tag}}}{f_b^{\text{untagged}} N_{\text{jets}}^{\text{untagged}}} \]

(1)

\[N_{\text{jets}}^{b\text{tag}} = N_{\text{jets}}^{\text{total}} f_b \frac{f_b}{\varepsilon_b} \]

(2)

- **Purity** \((f_b) \) is found via fitting two very different distributions:
 - Distribution of SV mass is primary extraction method
 - Track impact parameter used as data-driven cross-check
- **Efficiency** \((\varepsilon_b) \) is found via the tagging and anti-tagging purity [eq. 1]

\[f_b = \text{purity from template fit} \]
\[\varepsilon_b = \text{efficiency of b-tagger} \]
\[C_b = \text{Fraction of jets with JP information} \]
PbPb B-Jet Spectra

CMS Preliminary $\sqrt{s_{NN}} = 2.76$ TeV

- Fully corrected and unfolded spectra plotted for both PbPb and pp
- B jets in PbPb scaled by T_{AA} → normalized to pp spectra
- Clear indication of suppression seen

B-jet suppression already indicated from this plot

May 21, 2014
Quark Matter 2014 - Kurt Jung, Purdue University
• First measurement of heavy flavor jet R_{AA}
• Clear suppression of b-jets
 – R_{AA} shows clear trend as a function of centrality
• Suppression favors pQCD model with stronger jet-medium coupling
“η_{CM}” in pPb

- pPb collisions are natively asymmetric
 - $E(\text{proton}) = 4 \text{ TeV}, E(\text{Pb}) = 1.58 \text{ TeV}/N$
 - Distributions of jets are centered around ± 0.465 units in η
- η distributions are corrected to the center-of-mass eta
- Pbp η distribution is “mirrored” ($\eta \rightarrow -\eta$)
 - This ensures consistency when pPb and Pbp results are used together
pPb B-jet Spectra

CMS Preliminary $\sqrt{s_{NN}} = 5.02$ TeV $L = 35$ nb$^{-1}$

- B-jet spectra shown for various selections in η_{CM}
- Spectra scaled by T_{pA} such that pp & pPb are directly comparable
- Minimal suppression or enhancement is observed

100 200 300 400
b-jet p_T [GeV/c]
• Result is *consistent with a small Cronin enhancement* from *but effects are quite minimal*

• Systematic uncertainties from b-tagging and spectrum unfolding dominate

• pPb b-jet fraction is consistent with PYTHIA at high p_T
Comparison of b-Jet R_{pA} [PYTHIA] and R_{AA}

CMS Preliminary

pPb L = 35 nb$^{-1}$; PbPb L = 150 μb$^{-1}$

- Nuclear Modification Factor

- b-jet R_{AA}, (0-100%), $|\eta|<2$
- b-jet R_{pA}^{PYTHIA}, $-2.4<\eta_{CM}<1.6$

- pPb Luminosity Unc.
- pPb Reference Unc.

- b-Jet R_{AA} is heavily suppressed compared to R_{pA} indicative of strong in-medium effects

May 21, 2014

Quark Matter 2014 - Kurt Jung, Purdue University

CMS PAS HIN-12-003 CMS PAS HIN-14-007
Global Jet Energy Modification

- Dramatic energy loss for jets in PbPb collisions
- Virtually no modification seen in pPb collisions
- We observe virtually no modification as a function of jet flavor

CMS PAS HIN-12-003 CMS PAS HIN-14-007 CMS PAS HIN-12-004 CMS PAS HIN-14-001
B Mesons vs b jets

• Measurements in conjunction with B mesons show consistency with over a very wide range in p_T!
• B Mesons in pPb show similar suppression w.r.t. pp simulation as do the b jets
• η-dependent jet production is generally a result of nPDF effects, due to η/bjorken-x correlations

• Plotting $R_{pA}(\text{PYTHIA})$ vs η shows no such trend
Summary

• b-jet R_{pA} (PYTHIA) consistent with unity within large systematic uncertainties

• b-jet R_{AA} shows increased suppression with increased centrality

• All b-jet suppression effects are consistent with inclusive-jet effects
 – No indication of flavor-dependent energy loss mechanisms within systematics at high-p_T
A distortion in the secondary vertex \(p_T \) spectrum would indicate suppression dependence between gluon and quark jets.

- This is not observed as the SV \(p_T \) spectrum in data.
Efficiency and Purity of b-Tagging

- Purity is calculated first from fits to SV mass distributions
- Efficiency calculated from MC using purity values extracted for samples with and without the b-tagger applied
\(R_{AA} \) is closest to unity for the peripheral collisions and shows increasing suppression with increasing centrality.
Additional Fits to JP Tagger

- Before tagging, b-fraction is approx. 3%
- After tagging, b-fraction is approx. 50%
b-jet Production at the LHC

• 2011 PbPb Run: 150 μb$^{-1}$ integrated lumi
• Corresponding # of b-jets is \sim15k
• Golden measurement: double b-tagged dijets
 – Removes gluon splitting component
 – Allows to obtain a high purity sample of b-jets
 – Small systematics w.r.t. inclusive jet measurement
• However:
 – Double b-tagging efficiency $\sim 0.5^2 = 0.25$
 – LO flavor creation mode only contributes ~ 15

• LESS THAN 1000 tagged di-b-jets (leading jet $p_T > 80$ GeV/c)
PYTHIA agrees with the b-jet fraction calculation within 20% systematic uncertainties for both 2.76 TeV (not shown) and 7 TeV.

Additional PYTHIA tuning uncertainty applied: 8% between D6T and Z2 tunes.

Scale factor of $0.99 \pm 0.02\text{(stat)} \pm 0.21\text{(syst)}$.