

Katarzyna Poniatowska, for the STAR Collaboration Warsaw University of Technology

Abstract

The main task of the Beam Energy Scan (BES) program at RHIC is to scan the QCD phase diagram with heavy-ion Au+Au collisions ($\sqrt{s_{NN}} = 7.7 - 62.4 \text{ GeV}$) to find signatures for the 1st-order phase transition and the critical point. Femtoscopy analysis allows us to extract information about the size of the emission source. In particular, from the non-identical particles correlations, e.g. pion-kaon femtoscopy, one can obtain information about asymmetry in emission processes of pions and kaons. This asymmetry gives knowledge of which type of particles is emitted first/second or/and from which area of the source. In this talk, we will present STAR results of pion-kaon femtoscopy analysis at mid-rapidity in Au+Au collisions $\sqrt{s_{NN}} = 39$ GeV.

Summary

- Pions are emitted closer to the system's center or/and later than kaons it is known from the shape of double ratio function.
- Correlation functions (Coulomb force) and double ratio (asymmetry) are the same for like/unlike sign systems.
- The correlation functions for 39 GeV are stronger than the correlation functions for 130 GeV, so source size must be smaller for lower collision energies.
- The asymmetry in the emission process in double ratio functions for the out direction for 39 GeV are stronger than for 130 GeV.

This work is supported by grants: National Science Centre, Poland No: 2011/01/M/ST2/04126, 2012/07/D/ST2/02123.

