Spectra of identified particles, geometry categorization and bias and global observables in d+Au Collisions

Sarah Campbell
for the PHENIX Collaboration
5/19/2014
Quark Matter
Darmstadt, Germany
Outline

• Why discuss d+Au centrality?
• How do we determine centrality, global observables & geometry?
 – Correcting for auto-correlation bias
• What is interesting in d+Au with centrality?
 – Identified particle results
• Conclusions/Future
Why discuss d+Au centrality?

Last Quark Matter:

Unclear how much of the R_{CP} is due to suppression in central d+Au versus an enhancement in peripheral d+Au.

$\pi^0 \ R_{dA}$ will be shown.

PHENIX Preliminary

d+Au, $\sqrt{s_{NN}} = 200$ GeV

Sarah Campbell -- QM2014
Why discuss d+Au centrality?

Last Quark Matter: An auto-correlation bias effect?

An auto-correlation bias effect?
Why discuss d+Au centrality?

\(p_T \) dependence of multiplicity effect in the auto-correlation bias

- Review centrality determination
- Review auto-correlation bias correction
- Discuss \(p_T \) dependence
$-3.9 < \eta < -3.0$

$\text{BBC Charge}_{\text{Au-going}}$

$\text{BBC Charge}_{\text{Au}} \propto N_{\text{Coll}}$

$N_{\text{Coll}}, N_{\text{Part}}, b, \text{etc.}$

Number of participating nucleons

Number of binary collisions

Sarah Campbell -- QM2014
$-3.9 < \eta < -3.0$

Observable

BBC Charge$_{\text{Au-going}}$

Map

Geometry, global information

$N_{\text{Coll}}, N_{\text{Part}}, b, \text{etc.}$

Glauber Monte Carlo

- d: Hulthen $\psi(r)$
- Au: Woods-Saxon $\rho(r)$

$$\text{BBC Charge}_{\text{Au}} \propto N_{\text{Coll}}$$

arXiv:1310.4793

Sarah Campbell -- QM2014
Systematic Uncertainties

81 variations of parameters
n-tagged Cross Check

Good agreement

η > 5

Counts

Single neutron

Exponential background

Double interactions

ZDC Energy (d-going direction) [GeV]

Neutron-Tag Fraction

Glauber Monte Carlo

n-tagged data

d+Au @ 200 GeV

arXiv:1310.4793

Sarah Campbell -- QM2014
Auto-correlation Bias

In p+p Trigger biased to non-diff. events \rightarrow more mid-y particles

\[
\frac{\epsilon_{\text{mid-y}}^{p+p}}{\epsilon_{\text{BBC}}^{p+p}} = \frac{75 \pm 3\% \text{ of particles}}{52 \pm 4\% \text{ of events}}
\]

\[
\sigma_{MB}^{pp} = \sigma_{\text{non-diff}} + \sigma_{1\text{-diff}} + \sigma_{2\text{-diff}}
\]

From Pythia: $42mb = 28mb + 10mb + 4mb$

Primarily produces particles at mid-rapidity
Auto-correlation Bias

In p+p
Trigger biased to non-diff. events → more mid-y particles

\[
\frac{\epsilon_{\text{mid-y}}^{p+p}}{\epsilon_{MB}^{p+p}} = \frac{75 \pm 3\% \text{ of Particles}}{52 \pm 4\% \text{ of Events}}
\]

In d+Au
Trigger bias

Effect in peripheral collisions, low \(\epsilon_{MB} \) → too high

arXiv:1310.4793
Sarah Campbell -- QM2014
Auto-correlation Bias

\[\frac{\varepsilon_{\text{mid-}y}^{p+p}}{\varepsilon_{\text{BBC}}^{p+p}} = \frac{75 \pm 3\% \text{ of Particles}}{52 \pm 4\% \text{ of Events}} \]

In p+p
- Trigger biased to non-diff. events \(\rightarrow \) more mid-\(y \) particles

In d+Au
- Trigger bias **AND** Multiplicity effect
 - Peripheral \(\frac{\text{Particles}}{\text{Event}} \) too high
 - Events with mid-\(y \) particles have higher multiplicity

Lose high multiplicity events, Decrease \(\frac{\text{Particles}}{\text{Event}} \)

Gain high multiplicity events, Increase \(\frac{\text{Particles}}{\text{Event}} \)

A hard interaction deposits 1.55 x charge in the BBC

arXiv:1310.4793
Auto-correlation Bias

\[\frac{\epsilon_{\text{mid-}y}^{p+p}}{\epsilon_{\text{BBC}}^{p+p}} = \frac{75 \pm 3\% \text{ of } \text{Particles}}{52 \pm 4\% \text{ of } \text{Events}} \]

In p+p: Trigger biased to non-diff. events \(\rightarrow\) more mid-\(y\) particles

In d+Au: Trigger bias \textbf{AND} Multiplicity effect

Correction factor, \(c\)

\[R_{dA} = \frac{c \, \frac{dN^{d+Au}}{dy}}{\langle N_{\text{Coll}} \rangle \frac{dN^{p+p}}{dy}} \]

<table>
<thead>
<tr>
<th>Centrality (%)</th>
<th>Bias Factor, (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20%</td>
<td>0.94 ± 0.01</td>
</tr>
<tr>
<td>20-40%</td>
<td>1.00 ± 0.01</td>
</tr>
<tr>
<td>40-60%</td>
<td>1.03 ± 0.02</td>
</tr>
<tr>
<td>60-88%</td>
<td>1.03 ± 0.06</td>
</tr>
</tbody>
</table>

Competing effects
- Trigger bias: 0.89
- Multiplicity effect: 1.16

Multiplicity effect only

These corrections are in all of our d+Au publications, both the 2003 and 2008 data

arXiv:1310.4793

Sarah Campbell -- QM2014
p_T Dependence of Multiplicity Effect

PHENIX Data p+p @ 200 GeV
- p+p inclusive (42 mb)
- p+p with particle p_T > 1.5 GeV/c
- p+p with \pi^0 at given p_T

arXiv:1310.4793
p_T Dependence of Multiplicity Effect

Model with Hijing

\[
c = \frac{\text{true sim. yield/event}}{\text{measured sim. yield/event}}
\]

PHENIX Data p+p @ 200 GeV
- p+p inclusive (42 mb)
- p+p with particle \(p_T > 1.5 \text{ GeV/c} \)
- p+p with \(\pi^0 \) at given \(p_T \)

RHIC

Hijing p+p \(\sqrt{s} = 200 \text{ GeV} \)

\(-3.9 < \eta < -3.0\)
p_T Dependence of Multiplicity Effect

Model with Hijing

\[c = \frac{\text{true sim. yield/event}}{\text{measured sim. yield/event}} \]

vary < 5%

PHENIX Data p+p @ 200 GeV

- p+p inclusive (42 mb)
- p+p with particle p_T > 1.5 GeV/c
- p+p with \(\pi^0 \) at given p_T

ARXIV:1310.4793

Sarah Campbell -- QM2014
p_T Dependence of Multiplicity Effect

Model with Hijing

\[c = \frac{\text{true sim. yield/event}}{\text{'measured' sim. yield/event}} \]

LHC

HIJING \(p+p \quad \sqrt{s} = 5.02 \text{ TeV} \)

\(-4.9 < \eta < -3.1\)

RHIC

HIJING \(p+p \quad \sqrt{s} = 200 \text{ GeV} \)

\(-3.9 < \eta < -3.0\)

Much larger effect at LHC!

arXiv:1310.4793

Sarah Campbell -- QM2014
What causes the RHIC/LHC difference?

- Multiparton interactions
 - 0.24 in 200 GeV d+Au
 - 1.36 in 5.02 TeV p+Pb

\(\sqrt{s_{NN}}\) dependence

arXiv:1310.4793

Sarah Campbell -- QM2014
What causes the RHIC/LHC difference?

- Multiparton interactions
 - 0.24 in 200 GeV d+Au
 - 1.36 in 5.02 TeV p+Pb

RHIC auto-correlation bias is well understood & under control

Hijing

\(N_{\text{coll}} \) shape dependence

\(\sqrt{s_{\text{NN}}} \) dependence
Mini-summary

- p_T dependence of multiplicity effect is within the uncertainty of auto-correlation bias correction
- Auto-correlation factors correct for this bias
- $\pi^0 + \text{jet } R_{CP}$ is robust
 - Can not be described solely by auto-correlation bias in Hijing

Next: Nuclear Modification of identified hadrons in d+Au
 - π, K, p, K_S^0, K^*
Nuclear modification factor in d+Au

Consistent with N_{Coll}-scaled p+p

arXiv:1405.3628
Nuclear modification factor in d+Au

Hint of suppression at high p_T

$\sqrt{s_{NN}} = 200$ GeV

R_{dAu} vs. p_T [GeV/c] for 0-20% and 60-88% centrality bins.

Legend:
- π^0
- K^0
- K_S
- ϕ
- $\bar{p}+p$

arXiv:1405.3628

Sarah Campbell -- QM2014
Nuclear modification factor in d+Au

Baryons enhanced in central d+Au

arXiv:1405.3628
Nuclear modification factor in d+Au

Baryons enhanced in central d+Au

Recombination in d+Au?

Sarah Campbell -- QM2014
Nuclear Modification Factors

Baryon enhancement increases with d+Au centrality

PRC 88, 024906 (2013)
Nuclear Modification Factors

Suppression increases with Au+Au centrality

PRC 88, 024906 (2013)
Nuclear Modification Factors

Protons are suppressed in Au+Au relative to 0-20% d+Au

Sarah Campbell -- QM2014
Compare 60-92% Au+Au and 0-20% d+Au

Energy loss in peripheral Au+Au?

or

Effect of rapidity shift in particle production?

or

Hydrodynamic effect?

No N_{coll}-scaling applied

<table>
<thead>
<tr>
<th>System</th>
<th>$\langle N_{\text{coll}} \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au+Au 60-92%</td>
<td>14.8 ± 3.0</td>
</tr>
<tr>
<td>d+Au 0-20%</td>
<td>15.1 ± 1.0</td>
</tr>
</tbody>
</table>

PRC 88, 024906 (2013)
Conclusions

• Auto-correlation bias well understood
 – π^0 + jet R_{CP} not described by auto-correlation bias in Hijing

• Baryon enhancement in d+Au
 – Peripheral d+Au consistent with N_{Coll}-scaled p+p
 – Recombination in central d+Au?

• Future
 – Run14: 3He+Au
 – Run15: p+Au, p+Si
 – How to interpret behavior of $\frac{60-92\% \text{ Au}+\text{Au}}{0-20\% \text{ d}+\text{Au}}$?
Backup
Observable

- $-3.9 < \eta < -3.0$

BBC Charge$_{\text{Au-going}}$

Geometry, global information

- $N_{\text{Coll}}, N_{\text{Part}}, b, \text{ etc.}$

Map

BBC Charge$_{\text{Au}} \propto N_{\text{Coll}}$

- MB trigger turn on curve

Glauber Monte Carlo
- d: Hulthen $\psi(r)$
- Au: Woods-Saxon $\rho(r)$

arXiv:1310.4793

Sarah Campbell -- QM2014
Systematic Uncertainties

81 variations of parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{NN}</td>
<td>42mb</td>
<td>39mb</td>
<td>45mb</td>
</tr>
<tr>
<td>$W - S$ $\rho(r)$</td>
<td>R = 6.38 fm a = 0.54 fm</td>
<td>Less dense R = 6.65 fm a = 0.55 fm</td>
<td>More dense R = 6.25 fm a = 0.53 fm</td>
</tr>
<tr>
<td>N_{Coll}^α</td>
<td>$\alpha = 1$</td>
<td>$\alpha = 0.95$</td>
<td>$\alpha = 1.05$</td>
</tr>
<tr>
<td>z-vtx</td>
<td>< 5 cm</td>
<td>-25-30 cm</td>
<td>25-30 cm</td>
</tr>
</tbody>
</table>

![Graph showing systematic uncertainties with 81 variations of parameters](image-url)
Where do these numbers come from?

In p+p

Trigger biased

\[
\frac{\epsilon_{\text{mid} - y}^{p+p}}{\epsilon_{\text{BBC}}^{p+p}} = \frac{75 \pm 3\% \text{ of Particles}}{52 \pm 4\% \text{ of Events}}
\]

Likelihood BBC trigger fires assuming 42mb \(\sigma_{\text{NN}}\)

Likelihood trigger fires from mid-\(y\) \(\pi^0\), charged hadron, J/\(\psi\)

In d+Au

Trigger bias AND Multiplicity effect

<table>
<thead>
<tr>
<th>Centrality</th>
<th>Bias Factor, (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20%</td>
<td>0.94 ± 0.01</td>
</tr>
<tr>
<td>20-40%</td>
<td>1.00 ± 0.01</td>
</tr>
<tr>
<td>40-60%</td>
<td>1.03 ± 0.02</td>
</tr>
<tr>
<td>60-88%</td>
<td>1.03 ± 0.06</td>
</tr>
</tbody>
</table>

Competing effects
- Trigger bias: 0.89
- Multiplicity effect: 1.16

Assume a hard interaction deposits 1.55 x charge in the BBC

Scale NBD accordingly for that interaction

Consider 1 hard interaction among the \(N_{\text{Coll}}\) in that event

Calculate yield with and without multiplicity effect to get correction

Trigger less efficient

Sarah Campbell -- QM2014
Hijing info

- Model BBC response and trigger
 - Full GEANT for each event, $O(10^9)$ events, takes too long
 - In p+p, require minimum of 1 particle in each BBC
 - 48% \rightarrow 52 +/- 4% in data
 - In d+Au:
 - 83% \rightarrow 88 +/- 4% in data, separated into centrality bins
- Model central arm response for $p_T > 1$ GeV mid-y particle
 - BBC multiplicity increase 1.62 \rightarrow 1.55 in data
 - Trigger probability 62% \rightarrow 75 +/- 3% in data
 - Because of 1-diff, 2-diff handling in Hijing?
- Get mid-y yield/event from simulated BBC ‘measured’ centrality bins \rightarrow ‘measured’ value
 - Calculate N_{Coll} from generator ‘truth’ info in these ‘measured’ bins
- Get mid-y yield/event from events in ‘truth’ centrality bins with the same N_{Coll} \rightarrow ‘truth’ value
K_S^0 and K^{*0} in $d+Au$, Cu+Cu

π^0: Photon ID in EMC

Particle ID in TOF-E

arXiv:1405.3628
π, K, p in $d+Au, Au+Au$
Time of Flight measurement

\[m^2 = \frac{p^2}{c^2} \left(\frac{t^2 c^2}{L^2} - 1 \right) \]

<table>
<thead>
<tr>
<th>Component</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charged tracking</td>
<td>1.050</td>
</tr>
<tr>
<td>Multiple scattering</td>
<td>1.000</td>
</tr>
<tr>
<td>Total timing</td>
<td>0.095 (95ps)</td>
</tr>
</tbody>
</table>

- pID purity better than 90%

Au+Au 200 GeV

2σ bands

Sarah Campbell -- QM2014
Charge ratios

<table>
<thead>
<tr>
<th></th>
<th>p+p</th>
<th>d+Au</th>
<th>Au+Au</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrality dependence</td>
<td>N.A.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>p_T dependence</td>
<td>✓</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Isospin effect at high p_T
K/π Ratio

Strangeness enhancement in Au+Au

No strangeness enhancement in d+Au
p/π Ratio

Baryon enhancement in Au+Au and d+Au

PRC 88, 024906 (2013)
Compare d+Au, Au+Au

<table>
<thead>
<tr>
<th>System</th>
<th><Ncoll></th>
<th><Npart></th>
</tr>
</thead>
<tbody>
<tr>
<td>Au+Au 60-92%</td>
<td>14.8 ± 3.0</td>
<td>14.7 ± 2.9</td>
</tr>
<tr>
<td>d+Au 0-20%</td>
<td>15.1 ± 1.0</td>
<td>15.3 ± 0.8</td>
</tr>
</tbody>
</table>

Similar particle production mechanisms in d+Au and peripheral Au+Au
\textbf{He}^3+\textbf{Au} provides an larger, intrinsic triangular collision geometry

backup