Event activity dependence of the J/ψ production in p-Pb collisions Igor Lakomov*, IPN Orsay *on behalf of the ALICE collaboration #### p-Pb run in ALICE - \clubsuit J/ψ production was already studied differentially vs y and p_T . Next step event activity. - ❖ ZDC-based event activity estimator is used (see Alberica Toia's talk): - Large rapidity gap between the muon spectrometer and the ZDCs - Small bias: slow nucleon production ~ independent of hard processes. #### Q_{pA} vs event activity... $$Q_{pPb}^{J/\psi,i} = \frac{Y_{pPb}^{i}}{\left\langle T_{pPb}^{i} \right\rangle \sigma_{pp}^{J/\psi \to \mu^{+}\mu^{-}}}$$ - Due to a potential residual bias in the centrality estimation (T_{pPb}) , the ratio is not necessarily equal to 1 in the absence of nuclear effects, therefore, we refrain from employing the notation R_{pPb} , bus use Q_{pPb} instead. - T_{pPb} is the nuclear thickness function in a given ZN energy event class i. - $\sigma_{pp}^{J/\psi \rightarrow \mu\mu}$ interpolated pp cross-section at \sqrt{s} = 5.02 TeV. - Significant difference between event activity dependence at backward and forward y. - At backward y, Q_{pPb} is consistent with unity with a hint of increase at large event activity. - At forward y, the suppression of the J/ ψ production increases with the event activity and reaches up to 45%. #### Q_{pA} vs event activity and vs p_{T} - \triangleright Significant difference of the p_T dependence of Q_{pPb} between different event activity classes. - \triangleright At large event activity Q_{pPb} at backward y is much higher than unity (up to 1.45) at high p_{T} . - ♦ Can it be described by antishadowing? ### $< p_T >$ and $\Delta < p_T^2 >_{pPb}$ vs event activity - ightharpoonup J/ψ production in p-Pb has a harder $p_{\rm T}$ distribution at forward y than at backward y for the full event activity range. - Arr $\Delta < p_T^2 >_{J/\psi}$ at forward y is consistent with a strong effect from MPI while at backward y it is consistent with 0. ## Thank you for your attention! Danke schön!