When The Heavy Quark Jet Bends

Trambak Bhattacharyya¹, Surasree Mazumder¹ and Raktim Abir²

¹ VECC, ² SINP and presently at Wayne State University

Approximations of Jet Models

- i) soft \implies energy of radiation (ω) << energy of parent parton (E)
- ii) No recoil due to scattering (Eikonal 1) i. e. transverse momentum transfer $q_{\perp} << E$ and no recoil due to radiation (Eikonal 2) i.e. transverse momentum of emission $k_{\parallel} << E$

iii) Collinearity i.e. radiation almost grazes the emitting parton

Relaxing eikonal 1 approximation

The present work relaxes the Eikonal 1 approximation at the level of single emission kernel with the help of the Feynman diagram techniques of pQCD for Heavy Quark-Light Quark single gluon radiative process. Five Feynman diagrams are possible.

The radiation spectrum off the heavy quark considering recoil due to scattering has been found out to be:

$$x \frac{dn_g}{dk_{\perp}^2 dx \, dq_{\perp}^2} \propto \frac{1}{k_{\perp}^2} \times Elastic \times \left[\sum_{n=2,1,0} C_n e^{2(n-1)\eta_g} \left(\frac{k_{\perp}^2}{k_{\perp}^2 + x^2 M^2} \right)^n \right] \times LPM$$

$x = \frac{k_{\perp}e^{\eta_g}}{\sqrt{s}}$; \sqrt{s} : Mandelstam variable η_g : Gluon rapidity **Ref: TB, SM & RA, arXiv: 1307.6931**

Radiation spectrum non-eikonality

Conclusions

Important for studying transverse momentum broadening

Helps incorporating bending of medium energy jets

 k_{\perp}

Multiple scattering and multi-gluon emission

Similar calculation for

Qg	$\rightarrow Qgg$
$\mathcal{L}\mathcal{S}$	-288