The Solenoidal Tracker At RHIC (STAR) is a multi-purpose detector excelling at tracking and identification of charged particles at mid-rapidity in the high multiplicity environment of heavy-ion collisions. The main subsystems used in this analysis are:

- **Time Projection Chamber (TPC)**: Full 2π azimuthal coverage
- **Pseudorapidity**: $-1 < \eta < 1$
- **Charge particle tracking and momentum reconstruction**
- **Particle identification via ionization energy loss dE/dx**

Time of Flight Detector (TOF)

- **Timing resolution**: $<100\,\text{ps}$
- **Particle identification via η/β**
- **Together with TPC provides a good separation of electrons from hadrons up to about $1.5\,\text{GeV/c}$**

Barrel Electromagnetic Calorimeter (BEMC)

- **Tower $\Delta \eta/\Delta \phi = 0.03 \pm 0.05$**
- **Electron-hadron separation using pT at high momentums**

Conclusions and Perspectives

- **J/\psi signal of significance of 1\sigma (p_{T}=0.7\,\text{GeV/c})** observed in U+U collisions at $\sqrt{s_{NN}} = 193\,\text{GeV}$
- **First STAR measurement of J/\psi nuclear modification factor in U+U presented**
- **Nuclear modification factor as a function of p_{T} is similar as in Au+Au collisions**

References