

Search for the 'Ridge' in d+Au Collisions at RHIC by STAR

Li YI
(for the STAR Collaboration)
Purdue University
yil@purdue.edu

May, 2014

Overview

- Motivation
- Dihadron Correlations
 - High-multiplicity vs low-multiplicity
 - TPC-TPC ($\Delta\eta$ ~1.5) and TPC-FTPC ($\Delta\eta$ ~-3)
- Summary

Ridge in p+p, p+Pb at LHC

- Ridge observed in high-multiplicity pp and pPb events
- High-multi.— low-multi. (for jets) → double ridge in pPb

Ridge in d+Au at RHIC?

PHENIX d+Au Double Ridge

Physics mechanisms

- Hydro?
- CGC?

PHENIX d+Au Finite v2

STAR Detector

Large STAR acceptance

TPC: -1<η<1

FTPC: 2.8<|n|<3.8

-	Centrality	TPC	FTPC-Au	ZDC-Au
-	0-20%	$N_{ch} \ge 29$	$N_{ch} \ge 17$	$ADC \ge 128$
	40 - 100%	$N_{ch} \le 19$	$N_{ch} \leq 9$	$ADC \le 116$

Dihadron $\Delta \eta - \Delta \phi$ Correlations

d+Au@200 GeV Run3

 p_{T} : [1,3]x[1,3] GeV/c

Trigger-Associate

 Background subtracted by Δη-dependent Zero-Yield-At-Minimum (ZYAM) method

TPC-TPC Δφ Correlations High- vs Low-mult

d+Au@200 GeV

 p_{T} : [1,3]x[1,3] GeV/c FTPC Multiplicity

- high-mult. (cent.) > low-mult. (peri.) on both near-side and away-side.
- central peripheral = "double ridge"

Near-side Ridge in High-multiplicity

d+Au@200 GeV

 p_{T} : [1,3]x[1,3] GeV/c FTPC Multiplicity

- Finite pedestal → Near-side Ridge
- Different jet shapes and yields between cent. and peri.
 - → Multiplicity selection bias? Jet energy, fragmentation?

Away-side Ridge?

d+Au@200 GeV

 Cent. - peri. ≠ Cent. - Jets residual of jets p_{T} : [1,3]x[1,3] GeV/c FTPC Multiplicity

(0-20%) - (40-100%)

STAR Preliminary

Near-side

Away-side

Away-side Ridge?

d+Au@200 GeV

 Cent. - peri. ≠ Cent. - Jets residual of jets p_{T} : [1,3]x[1,3] GeV/c FTPC Multiplicity

(0-20%) - (40-100%)

 $|\Delta\eta|$ used in PHENIX's paper Same near-side and away-side PRL 111 (2013) 212301

No Away-side Ridge

d+Au@200 GeV

 p_{T} : [1,3]x[1,3] GeV/c FTPC Multiplicity

Do first-order correction: same jet yield

Assume:

- Peri. correlation has jets only.

Y^{Cent.} , Y^{Peri.} : near-side jet yields

$$R = Y^{Cent.} / Y^{Peri.} = 1.29 \pm 0.05$$
(Away-side ratio: 1.32 \pm 0.02)

Cent. - R×Peri≈ Cent. - Jets

Away-side ~ 0 → No Double Ridge in d+Au@200GeV

near-side jet shapes difference

TPC-TPC $\Delta \phi$ Correlations High- vs Low-mult.

d+Au@200 GeV

 p_{T} : [1,3]x[1,3] GeV/c FTPC Multiplicity

- Away-side ~ 0
- Near-side: finite at $\Delta \eta \approx 1.5$
 - → How about even larger $|\Delta \eta| \approx 3$?

difference

TPC-FTPC: High-. vs Low-multiplicity

d+Au@200 GeV

 p_{T} : [1,3]x[1,3] GeV/c ZDC Energy

- Away-side: enhanced at Au-going side; depleted at d-side.
- Near-side: finite for FTPC Au-going side ($\Delta \eta \approx 3$) in high-multiplicity collisions.

Recap: Near-side in High-multiplicity

p₋: [1,3]x[1,3] GeV/c d+Au@200 GeV $\Delta \eta \approx 1.5$ 15^{×10}-3 STAR Preliminary TPC-TPC **TPC-FTPC Au-going** (1/N_{trig}) d²N/d∆ηd∆φ (1/N_{trig}) d²N/d∆ηd∆φ FTPC 0-20% **ZDC 0-20% STAR Preliminary** 0.05 ZYAM=0.3468(10) ZYAM=0.1776(3) $\Delta \Phi$ $\Delta \phi$

- Long-range near-side correlations are observed in both TPC-TPC and TPC-FTPC
- What could be the physics mechanism?
- Study charge combinations

Unlike-sign vs Like-sign

- $\Delta \eta \approx 1.5$ near-side: unlike-sign > like-sign
 - → Jet-like feature?
- $\Delta \eta \approx$ -3: No difference.

Associated Particle: Positive vs Negative

- $\Delta \eta \approx 1.5$: No difference.
- $\Delta \eta \approx$ -3 near-side: positive associated particles only
 - → Transport protons?

Vn for Pos. vs Neg. Associated Particles

d+Au@200 GeV

 p_{T} : [1,3]x[1,3] GeV/c

 $\frac{dN}{d\Delta\phi} = N(1+2V_1\cos(\Delta\phi)+2V_2\cos(2\Delta\phi)) \text{ for TPC-FTPC}$

No ZYAM background subtraction.

- V₁ are different for positive and negative associated particles despite similar multiplicity
- V₂ are somewhat different, but big difference in V1
- V_n may not be meaningful in d+Au collisions @200 GeV

Summary

- Jets yield and shape difference observed in low- and highmultiplicity d+Au@200 GeV
- Away-side ~ 0 after jet difference corrected No double ridge
- Finite near-side long-range correlations Ridge observed by STAR.
 - $-\Delta\eta$ ~ 1.5 : unlike-sign > like-sign → jet-like?
 - $-\Delta\eta$ ~ -3: from positive associated particle only → transport protons?
- The near-side ridge may be due to physics mechanism other than flow. STAR does not observe elliptic flow in d+Au.

Backup

2014 May

TPC-TPC $\Delta \phi$ Correlations Cent. vs Peri.

d+Au@200 GeV

pT: 1-3 x 1-3 GeV/c FTPC Multiplicity

Away-side Ridge?

d+Au@200 GeV

pT: 1-3 x 1-3 GeV/c FTPC Multiplicity

- High. Low. ≠ High. Jets^{High.}: jet residual
- Do first-order correction with jet yield → Next slide

No Away-side Ridge

d+Au@200 GeV

pT: 1-3 x 1-3 GeV/c FTPC Multiplicity

Assume:

- Peri. has jets only.

N^{Cent.}, N^{Peri.}: near-side jet yields

$$R = N^{Cent.} / N^{Peri} = 1.29 \pm 0.05$$

Cent. - R×Peri.≈ Cent. - Jets^{Cent}

- Away-side ~ 0 → No Double Ridge in d+Au@200GeV
- Near-side: finite at $\Delta \eta \approx 1.5$
 - → How about even larger $|\Delta \eta| \approx 3$?

Jet Difference in Central and Peripheral

FTPC vs ZDC Energy

TPC-TPC 1.2< $|\Delta \eta|$ <1.8

FTPC vs ZDC Energy

TPC-TPC 1.2< $|\Delta \eta|$ <1.8

Fourier Coefficients vs. Multiplicity

d+Au@200 GeV pT: 1-3 x 1-3 GeV/c

 $\frac{dN}{d\,\Delta\,\phi} = N\,(1 + 2\,V_1\cos(\Delta\,\phi) + 2\,V_2\cos(2\,\Delta\,\phi)) \ \ \text{for TPC-TPC and TPC-FTPC} \\ \text{No ZYAM background subtraction.}$

V₂ is constant over multiplicity

• Peripheral dihadron $\Delta \phi$ cannot see V2 modulation because of large V1.

Different Charges Combinations

d+Au@200 GeV

pT: 1-3 x 1-3 GeV/c FTPC Multiplicity

Single Particle Dh Distribution

PHOBOS PRC 72 (2005)

Associated Particle: Positive vs Negative

 p_{τ} : [1,3]x[1,3] GeV/c d+Au@200 GeV $\Delta \eta \approx -3$ $\Delta \eta \approx 1.5$ ×10⁻³ STAR Preliminary Positive assoc **ZDC 0-20%** 0.03 Negative Near-side yield ₹ Near-side yield FTPC 0-20% $Pos:24\pm5^{+6}_{-2}\times10^{-4}$ 0.02 $Pos:12.5\pm1.6^{+2.4}_{-0.3}\times10^{-4}$ $\text{Neg:}23\pm5^{+8}_{-2}\times10^{-4}$ **STAR Preliminary** $\text{Neg:}2.4\pm1.5^{+1.0}_{-0.8}\times10^{-4}$ ZYAM=0.1801(7) ZYAM=0.1668(7) 0.004 0.004 Pos - Neg Pos - Neg 0.002 0.002 -5<Δη<2 0.024 pion-proton -0.002 -0.002STAR Preliminary Hijing 0-20% -0.004 [1-3]x[1-3] GeV/c $\Delta \phi$ • $\Delta \eta \approx 1.5$: No difference. 0.021 • $\Delta \eta \approx -3$ near-side: positive asso → Transport protons? $\Delta \phi$