Quark Matter 2014 - Darmstadt
QCD Phase Diagram from the Lattice at Strong Coupling

AIC R

UNIVERSITAT for
FRANKFURT AM MAIN Wolfgang Unger, Owe Philipsen (University Frankfurt), Philippe de Forcrand (ETHZ, CERN) Helmholtz International Center

Strong Coupling QCD - Motivation and Setup

Why Strong Coupling QCD?
e With conventional lattice simulations based on Hybrid Monte Carlo: due to the sign problem, the full
QCD phase diagram at finite density is out of reach (all methods limited to u/T < 1).

e Limit where the sign problem can be made mild: strong coupling ¢ — o0 = [ =22 — (.

g’

e In this limit, the gauge action Sg[U] is absent, only the fermionic action Sg[U, 1, 1] persists.

e With simulations based on SC-LQCD, phase diagram and nuclear phase transition can be studied!

General Strategy for SC-LQCD

e SC-limit allows to integrate out gauge fields completely since integration factorizes!

o After further integrating out Grassmann variables, new degrees of freedom are [1]:

o SC-LQCD exhibits confinement and chiral symmetry breaking.

e Drawback: lattice remains coarse, as SC-limit is opposite of continuum limit. 0

e Results depend on choice of fermion discretization: staggered or Wilson?

e Range of validity differs; only in continuum limit g — 0, results become universal.

o0

Staggered
P Fermions

- Monomers n, correspond to mesons, M(x) = ¥ (z)(x),

- Dimers k; correspond to (non-oriented) meson hoppings (M (z) M (z + 1)),

- Baryons which form oriented loops £ with segements B(z)B(x + [1) and Wison
B rmion
B(z) = yeiix i, (2) . .. iy ().

Fig. 1: Range of validity

for stagggered fermions

e Staggered and Wilson fermions in SC-limit can be studied via Worm algorithm. and Wilson fermions.

SC-LQCD with Staggered Fermions:

e Advantage: valid for all quark masses, easy to get to chiral limit and to study chiral dynamics.

e Disadvantage: fermions have no spin (staggered phases result in Grassmann constraint).

e Strong coupling partition function (exact rewriting of Sp):
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meson hoppings M, M, chiral condensate M, baryon hoppings B, B, Grassmann constraint

SC-LQCD with Wilson Fermions:

e Advantage: spins also present at strong coupling: gauge corrections simpler to obtain.

e Disadvantage: Partition function can only be written in a hopping parameter expansion in x(m,)

=  Restricted to heavy quarks, no chiral dynamics.

e Strong coupling partition function (here the static limit, leading order in &, with C' = (2/4;6"’“)]\[7):
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Recent Results for Staggered SC-LQCD

The Phase Diagram in the Strong Coupling Limit & Chiral Limit:

1

I'he chiral and nuclear transition coincide, at large densities, baryonic crystall forms (saturation).

T

['he 1*" order line terminates at tricritical point (aT’r, apr), which becomes the critical point at finite am,,.

1

I'he nuclear interaction is an entropic force (order effects in pion gas [3]), no meson exchange between
baryons at 5 = 0.

e Behavior at low ap is qualitatively the same, but first order transition strongly N.-dependent. 4]

e N -dependence of phase boundary due to anisotropy -, no re-entrance in continuous time (N, — 00).
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Fig. 2: SC phase diagram measured with Worm algorithm [2,3,4]. Left: with identifications: a1 = +~, ap = ~2arp. Center: corrected anisotropy

a _

o = f(7v, N7). Right: One of several possible scenarios on how the SC phase diagram evolves into the Ny = 4 continuum phase diagram.

Questions we want to address by making £ finite (towards continuum limit):

® (

® C

oes the nature of nuclear interactions change qualitatively? (meson exchange now possible)

o the nuclear and chiral transition split?

® (

oes the tricritical point move to smaller or larger p as 5 is increased?
= relevant for existence of chiral critical endpoint in continuum limit!

Gauge Corrections to the Strong Couling Limit

e Full partition function including gauge action linearized in 8 to obtain corrections to SC-limit:

e Plaquette expectation value at strong coupling |5|:
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e O(p) partition function obtained by introducing

discrete variables g, for excited plaquettes:

» Quark Flux confined in Baryon

» Quark Flux confined in Meson
- modified link weights and site weights, » Gauge Flux

- modified Grassman constraint N. — N.+4q,(z).

Fig. 3: Left: Graphical representation of a one of 19 diagrams at O(f3).

Gauge Corrections to the SC-Phase Diagram

Gauge Observables at non-zero Density

e Polyakov loop (L) and spatial /temporal plaquettes (P), (FP;) measured via reweighting:

_ fd_d <L>UZF
o (L) = fXd;:dXZF

e Scan at finite density in polar coordinates (aT’, ap) — (p, @) across the phase boundary.

and (P;) are sensitive to the chiral transition.
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Fig. 4: Left: Temperature dependence of (Ps), (P;). Right: Temperature dependence of Polyakov (L) and Antipolyakov loop (L*)

Fermionic Observables at non-zero Density

e Chiral susceptibility (and also baryon density) at finite 8 determined by O(8) Taylor coefficient:

X(B) =xo+ 5+ 0 (8, V= d Z5(b)

= ()" P) = (¥)) (P)

dB Z(8) | 5

e From 2" order scaling of x(3), we obtain for the slope: - aT -(8) ~ —0.446(7) at p = 0, which decreases
with increasing p and vanishes at the tricritial point and along the first order line. |5

e Reweighting of baryon density allows to determine how the tricritical point (a1, apr) moves along the
first order line as a function of (.
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Fig. 5: Left: Shift in a’I,. obtained from the Taylor coeflicient CSCD, related to scaling function parameters via AaTp(f) = — BaTcgcz

Right: Baryon density npg for various 8 and u/T > pp/Tp =~ 0.62. The nuclear transition weakens with increasing 8 and eventually turns into ond order,
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Prospects for SC-LQCD with Wilson Fermions

Wilson fermions were studied at finite density with a 3d-effective theory based on Polyakov loops [7]:
e No backtracking, since (1 +;)(1 —~;) =0 = mesons and baryons couple to Polyakov loops.

e Suitable to study finite temperature/density (no vacuum diagrams necessary).

e Joint expansion in u(f) = 1% + ... and &, so far up to O(u", k™) with n +m =4 (N. = 3).

e Nuclear interaction is not entropic, meson exchange already at 8 = 0.

Aim: also study Wilson fermions as 4d dimer system to go to smaller quark masses:

e Mesons (dimers) and baryons (fluxes) carry spin, combinatorics governed by spin conservation.

e Valid configurations obtained by Wick contracting 4/ N, monomers according to certain vertex rules.

Conclusion & Outlook

Achievements so far:

o Staggered fermions extensively studied in chiral limit, now the phase diagram including gauge
corrections is charted, which seems to be valid up to 8 ~ 5 (a = 0.3 fm).

e All observables can be measured at finite density, the slope aT (1) determined up to tricritical point.

Further Goals:

o (52) corrections for staggered fermions feasible; extension to N; = 2 useful to compare to Wilson.

e 4d simulations with Wilson fermions in dimer representation necessary to go to smaller quark masses.
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