Rapidity evolution of Wilson lines at the next-to-leading order: Balitsky-JIMWLK equation at NLO

Giovanni Antonio Chirilli
The Ohio State University

Quark Matter 2014 - Darmstadt - Germany May 20, 2014
Outline

- High-energy QCD scattering processes and Wilson lines.
- High-energy Operator Product Expansion: factorization in rapidity space.
- Evolution equation and background field method.
- NLO BK equation.
- Hierarchy of Wilson lines evolution at NLO: The Balitsky-JIMWLK evolution equation at NLO.
- Conclusions.
High-energy scattering in quantum mechanics and QED

- High-energy: $E \gg V(x)$
 WKB approximation.
- Replace the exact wave function by the semi-classical wave function.
- $\Psi(\vec{r}, t) = e^{-\frac{i}{\hbar}(Et-kx)} e^{-\frac{i}{\hbar} \int_{-\infty}^{z} dz' V(z')}$

At high-energy $\Psi = \Psi_{\text{free}} \times$ phase factor ordered along the line parallel to \vec{v}. The scattering amplitude is proportional to $\Psi(t = -\infty)$

$$U(x_\perp) = e^{\frac{-i}{\hbar} \int_{-\infty}^{+\infty} dz' V(z' + x_\perp)}$$

In QED

$$U(x_\perp) = e^{\frac{-ie}{\hbar} \int_{-\infty}^{+\infty} dt \dot{x}_\mu A^\mu(x(t))}$$
High-energy scattering in QCD

phase factor for the high-energy scattering: Wilson-line operator

\[U(x_\perp, v) = e^{\frac{-ig}{\hbar} \int_{-\infty}^{+\infty} dt \, \dot{x}_\mu A^\mu(x(t))} \]

\[Pe^{\int_{-\infty}^{+\infty} dt A(t)} = 1 + \int_{-\infty}^{+\infty} dt \, A(t) + \int_{-\infty}^{+\infty} dt \, A(t) \int_{-\infty}^{t} dt' \, A(t') + \ldots \]
Each path is weighted with the gauge factor $P e^{ig \int dx \mu A^\mu}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.
Propagation in the shock wave: Wilson line (Spectator frame)

\[\left[z', z \right] = P e^{i g \int_0^1 du (z'-z)^\mu A_\mu (uz'+(1-u)z)} \]

\[U_z = [\infty p_1 + z_\perp, -\infty p_1 + z_\perp] \]

\[p^\mu = \alpha p_1^\mu + \beta p_2^\mu + p_\perp^\mu, \quad p_1^\mu = \sqrt{s/2}(1, 0, 0, 1), \quad p_2^\mu = \sqrt{s/2}(1, 0, 0, -1) \]

s center-of-mass energy.
Propagation in the shock wave: Wilson line (Spectator frame)

Each path is weighted with the gauge factor $P e^{i g \int dx_\mu A^\mu}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction ⇒ we can replace the gauge factor along the actual path with the one along the straight-line path.
Propagation in the shock wave: Wilson line (Spectator frame)

Each path is weighted with the gauge factor $P e^{i g \int dx_\mu A^\mu}$. Since the external field exists only within the infinitely thin wall, quarks and gluons do not have time to deviate in the transverse direction \Rightarrow we can replace the gauge factor along the actual path with the one along the straight-line path.

$Y > \eta$

$Y < \eta$
\[\langle B | T \{ \hat{j}_\mu (x) \hat{j}_\nu (y) \} | B \rangle \simeq \int d^2 z_1 d^2 z_2 I_{\mu\nu}^{LO} (z_1, z_2; x, y) \langle B | \text{tr} \{ U_1^\eta U_2^{\dagger \eta} \} | B \rangle \]

\[+ \frac{\alpha_s}{\pi} \int d^2 z_1 d^2 z_2 d^2 z_3 I_{\mu\nu}^{NLO} (z_1, z_2, z_3; x, y) \langle B | \text{tr} \{ U_1^\eta U_2^{\dagger \eta} \} \text{tr} \{ U_3^\eta U_2^{\dagger \eta} \} | B \rangle \]

\[\eta = \ln \frac{1}{x_B} \]

\[|B\rangle \text{ Target state} \]
Leading Order

\[\left[\langle T\{\hat{j}_\mu(x)\hat{j}_\nu(y)\}\rangle_A \right]^{LO} = \int \frac{d^2z_1 d^2z_2}{z_{12}^4} \ I_{\mu\nu}^{LO}(x, y; z_1, z_2) \text{tr}\{\hat{U}_{z_1}^\eta \hat{U}_{z_2}^{\dagger\eta}\} \]

\[\langle B|T\{\hat{j}_\mu(x)\hat{j}_\nu(y)\}|B \rangle = \int \frac{d^2z_1 d^2z_2}{z_{12}^4} \ I_{\mu\nu}^{LO}(x, y; z_1, z_2) \langle B|\text{tr}\{\hat{U}_{z_1}^\eta \hat{U}_{z_2}^{\dagger\eta}\}|B \rangle + \ldots \]

- If we use a model to evaluate \(\langle B|\text{tr}\{\hat{U}_{z_1}^\eta \hat{U}_{z_2}^{\dagger\eta}\}|B \rangle \) we can calculate the DIS cross-section.
- If we want to include energy dependence to the DIS cross-section, we need to find the evolution of \(\langle B|\text{tr}\{\hat{U}_{z_1}^\eta \hat{U}_{z_2}^{\dagger\eta}\}|B \rangle \) with respect to the rapidity parameter \(\eta \).
Regularization of the rapidity divergence

Matrix elements of Wilson lines: \(\langle \text{tr}\{U(x)U^\dagger(y)\}\rangle_A \) are divergent

For light-like Wilson lines loop integrals are divergent in the longitudinal direction

\[
\int_0^\infty \frac{d\alpha}{\alpha} = \int_{-\infty}^\infty d\eta = \infty
\]

Regularization by: slope

\[
U^\eta(x_\perp) = \text{Pexp}\left\{ ig \int_{-\infty}^\infty du \, n_\mu \, A^\mu(un + x_\perp) \right\}
\]

\[
n^\mu = p_1^\mu + e^{-2\eta} p_2^\mu
\]

At NLO the regularization by rigid cut-off is more convenient.
To get the evolution equation, consider the dipole with the rapidities up to η_1 and integrate over the gluons with rapidity $\eta_1 > \eta > \eta_2$. This integral gives the kernel of the evolution equation (multiplied by the dipole(s) with rapidity up to η_2).

In the frame $||$ to η_1 the gluons with $\eta < \eta_1$ are seen as pancake.

Particles with different rapidity perceive each other as Wilson lines.
Separate fields in quantum and classical according to low and large rapidity. Formally we may write:

\[
\langle B | \mathcal{O}^{n_1} | B \rangle \rightarrow \langle \mathcal{O}^{n_1} \rangle_A \rightarrow \langle \mathcal{O}^{n_2} \otimes \mathcal{O}^{n_1} \rangle_A
\]

Integrate over the quantum fields and get one-loop rapidity evolution of the operator \(\mathcal{O} \)

\[
\langle \mathcal{O}^{n_1} \rangle_A = \alpha_s (\eta_1 - \eta_2) K_{\text{evol}} \otimes \langle \mathcal{O}^{n_2} \rangle_A
\]

Where in principle \(\mathcal{O} \) and \(\mathcal{O}' \) are different operators.
Non-linear evolution equation

- **Linear case** \(\mathcal{O}^{\eta_1} = \alpha_s \Delta \eta \ K_{\text{evol}} \otimes \mathcal{O}^{\eta_2} \)
Non-linear evolution equation

- **Linear case** \(\mathcal{O}^{\eta_1} = \alpha_s \Delta \eta \, K_{\text{evol}} \otimes \mathcal{O}^{\eta_2} \)

- **Non-linear case** \(\mathcal{O}^{\eta_1} = \alpha_s \Delta \eta \, K_{\text{evol}} \otimes \{\mathcal{O}^{\eta_2} \mathcal{O}^{\eta_2}\} \)
Non-linear evolution equation

- **Linear case**
 \[\mathcal{O}^\eta_1 = \alpha_s \Delta \eta \ K_{\text{evol}} \otimes \mathcal{O}^\eta_2 \]

- **Non-linear case**
 \[\mathcal{O}^\eta_1 = \alpha_s \Delta \eta \ K_{\text{evol}} \otimes \{ \mathcal{O}^\eta_2 \mathcal{O}^\eta_2 \} \]

\[
\langle \{ U^\eta_1 \}_{ij} \rangle_A = \frac{\alpha_s}{2\pi^2} \Delta \eta \int \frac{d^2z_\perp}{(x - z)^2} \left[\langle \text{tr} \{ U^\eta_2 U^\eta_2 \dagger \} \{ U^\eta_2 \}_{ij} \rangle_A - \langle \frac{1}{N_c} \{ U^\eta_2 \}_{ij} \rangle_A \right]
\]

\[\Delta = \eta_1 - \eta_2 \]

\[\{ U^\dagger_1 \eta_1 \}_{ij}, \quad \{ U^\eta_1 U^\eta_1 \}_{ij}, \quad \{ U^\eta_1 U^\dagger_1 \eta_1 \}_{ij}, \quad \{ U^\dagger_1 \eta_1 U^\dagger_1 \eta_1 \}_{ij} \]
Non-linear evolution equation

- Linear case
 \[\mathcal{O}^\eta_1 = \alpha_s \Delta \eta \ K_{\text{evol}} \otimes \mathcal{O}^\eta_2 \]

- Non-linear case
 \[\mathcal{O}^\eta_1 = \alpha_s \Delta \eta \ K_{\text{evol}} \otimes \{\mathcal{O}^\eta_2 \mathcal{O}^\eta_2\} \]

\[\mathcal{O}^\eta_1 \mathcal{O}^\eta_2 \]

\[\langle \{U^\eta_1\}_x \rangle_A = \frac{\alpha_s}{2\pi^2} \Delta \eta \int \frac{d^2z_\perp}{(x - z)^2} \left[\langle \text{tr}\{U^\eta_2 U_2^\eta 2^\dagger\}\{U^\eta_2\}_z \rangle_A - \langle \frac{1}{N_c} \{U^\eta_2\}_x \rangle_A \right] \]

\[\Delta = \eta_1 - \eta_2 \]

\[\{U^\eta_1\}_x, \{U^\eta_1 U^\eta_1\}_x, \{U^\eta_1 U^\eta_1\}_y, \{U^\eta_1 U^\eta_1\}_y \]

Obtain a set of rules that allow one to get the LO evolution of any trace or product of traces of Wilson lines
Leading order: BK equation

\[
\frac{d}{d\eta} \text{tr}\{\hat{U}_x \hat{U}^\dagger_y\} = K_{\text{LO}} \text{tr}\{\hat{U}_x \hat{U}^\dagger_y\} + \ldots \Rightarrow \\
\frac{d}{d\eta} \langle \text{tr}\{\hat{U}_x \hat{U}^\dagger_y\}\rangle_{\text{shockwave}} = \langle K_{\text{LO}} \text{tr}\{\hat{U}_x \hat{U}^\dagger_y\}\rangle_{\text{shockwave}}
\]

\[
x_\bullet = \sqrt{\frac{s}{2}} x^-
\]

\[
x_* = \sqrt{\frac{s}{2}} x^+
\]
Non-linear evolution equation: BK equation

\[U_{z}^{ab} = 2 \text{tr}\{t^{a}U_{z}t^{b}U_{z}^{\dagger}\} \Rightarrow (U_{x}U_{y}^{\dagger})^{\eta_1} \rightarrow (U_{x}U_{y}^{\dagger})^{\eta_2} + \alpha_s(\eta_1 - \eta_2)(U_{x}U_{z}^{\dagger}U_{z}U_{y}^{\dagger})^{\eta_2} \]
Non-linear evolution equation: BK equation

\[U_{z}^{ab} = 2 \text{tr}\{t^a U_z t^b U_z^\dagger\} \Rightarrow (U_x U_y^\dagger)^{\eta_1} \rightarrow (U_x U_y^\dagger)^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^\dagger U_z U_y^\dagger)^{\eta_2} \]

\[\hat{U}(x, y) \equiv 1 - \frac{1}{N_c} \text{tr}\{\hat{U}(x_{\perp})\hat{U}^\dagger(y_{\perp})\} \]

\[\frac{d}{d\eta} \hat{U}(x, y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2z \ (x - y)^2}{(x - z)^2(y - z)^2} \left\{ \hat{U}(x, z) + \hat{U}(z, y) - \hat{U}(x, y) - \hat{U}(x, z)\hat{U}(z, y) \right\} \]

Non-linear evolution equation: BK equation

\[U_{z}^{ab} = 2 \text{tr} \{ t^{a} U_{z} t^{b} U_{z}^{\dagger} \} \Rightarrow (U_{x} U_{y}^{\dagger})^{\eta_{1}} \to (U_{x} U_{y}^{\dagger})^{\eta_{2}} + \alpha_{s} (\eta_{1} - \eta_{2}) (U_{x} U_{z}^{\dagger} U_{z} U_{y}^{\dagger})^{\eta_{2}} \]

\[\hat{U}(x, y) \equiv 1 - \frac{1}{N_{c}} \text{tr} \{ \hat{U}(x_{\perp}) \hat{U}^{\dagger}(y_{\perp}) \} \]

\[
\frac{d}{d\eta} \hat{U}(x, y) = \frac{\alpha_{s} N_{c}}{2\pi^{2}} \int \frac{d^{2}z \ (x - y)^{2}}{(x - z)^{2} (y - z)^{2}} \left\{ \hat{U}(x, z) + \hat{U}(z, y) - \hat{U}(x, y) - \hat{U}(x, z) \hat{U}(z, y) \right\}
\]

LLA for DIS in pQCD \Rightarrow BFKL (LLA: \(\alpha_{s} \ll 1, \alpha_{s} \eta \sim 1 \))
Non linear evolution equation: BK equation

\[U_{z}^{ab} = 2 \text{tr} \{ t^a U_z t^b U_z^\dagger \} \Rightarrow (U_x U_y^\dagger)^{\eta_1} \rightarrow (U_x U_y^\dagger)^{\eta_2} + \alpha_s (\eta_1 - \eta_2) (U_x U_z^\dagger U_z U_y^\dagger)^{\eta_2} \]

\[\hat{U}(x, y) \equiv 1 - \frac{1}{N_c} \text{tr} \{ \hat{U}(x_\perp) \hat{U}^\dagger(y_\perp) \} \]

\[
\frac{d}{d\eta} \hat{U}(x, y) = \frac{\alpha_s N_c}{2\pi^2} \int \frac{d^2 z (x - y)^2}{(x - z)^2 (y - z)^2} \left\{ \hat{U}(x, z) + \hat{U}(z, y) - \hat{U}(x, y) - \hat{U}(x, z) \hat{U}(z, y) \right\}
\]

LLA for DIS in pQCD ⇒ BFKL

LLA for DIS in sQCD ⇒ BK eqn

(\text{LLA: } \alpha_s \ll 1, \alpha_s \eta \sim 1)

(\text{LLA: } \alpha_s \ll 1, \alpha_s \eta \sim 1, \alpha_s^2 A^{1/3} \sim 1)

(s for semi-classical)
How to take higher-order corrections into account (either for BFKL or non-linear evolution equation).

Higher-order corrections are needed to improve phenomenology:
- Determine the argument of the coupling constant.
- Gives precision of LO.

Check conformal invariance (in $\mathcal{N}=4$ SYM)
\[
\frac{d}{d \eta} \text{Tr} \{ U_x U_y^\dagger \} = \\
\int \frac{d^2 z}{2\pi^2} \left(\alpha_s \frac{(x - y)^2}{(x - z)^2(z - y)^2} + \alpha_s^2 K_{NLO}(x, y, z) \right) \left[\text{Tr} \{ U_x U_z^\dagger \} \text{Tr} \{ U_z U_y^\dagger \} - N_c \text{Tr} \{ U_x U_y^\dagger \} \right] + \\
\alpha_s^2 \int d^2 z d^2 z' \left(K_4(x, y, z, z') \{ U_x, U_{z'}^\dagger, U_z, U_y^\dagger \} + K_6(x, y, z, z') \{ U_x, U_{z'}^\dagger, U_{z'}^\dagger, U_z, U_y^\dagger \} \right)
\]

\(K_{NLO} \) is the next-to-leading order correction to the dipole kernel and \(K_4 \) and \(K_6 \) are the coefficients in front of the (tree) four- and six-Wilson line operators with arbitrary white arrangements of color indices.

- We need to calculate some diagrams analytically (pen and paper).
Diagrams of the NLO gluon contribution

Diagrams with 2 gluons interaction
Diagrams of the NLO gluon contribution

Diagrams with 2 gluons interaction
Diagrams of the NLO gluon contribution

Diagrams with 2 gluons interaction

(XXXI) (XXXII) (XXXIII) (XXXIV)
"Running coupling" diagrams
Diagrams of the NLO gluon contribution

1 → 2 dipole transition diagrams
\[
\frac{d}{d\eta} \left[\text{tr}\{\hat{U}_{z_1} \hat{U}_{z_2}^\dagger\} \right]^{\text{conf}} = \frac{\alpha_s}{2\pi^2} \int d^2 z_3 \left(\text{tr}\{\hat{U}_{z_1} \hat{U}_{z_3}^\dagger\} \text{tr}\{\hat{U}_{z_3} \hat{U}_{z_2}^\dagger\} - N_c \text{tr}\{\hat{U}_{z_1} \hat{U}_{z_2}^\dagger\} \right)^{\text{conf}} \\
\times \frac{z_{12}^2}{z_{13}^2 z_{23}^2} \left[1 + \frac{\alpha_s N_c}{4\pi} (b \ln z_{12}^2 \mu^2 + b \frac{z_{13}^2 - z_{23}^2}{z_{13}^2 z_{23}^2} \ln \frac{z_{13}^2}{z_{23}^2} + \frac{67}{9} - \frac{\pi^2}{3}) \right] \\
+ \frac{\alpha_s}{4\pi^2} \int \frac{d^2 z_4}{z_{34}^2} \left\{ \left[-2 + \frac{z_{14}^2 z_{23}^2 + z_{24}^2 z_{13}^2 - 4z_{12}^2 z_{34}^2}{2(z_{14}^2 z_{23}^2 - z_{24}^2 z_{13}^2)} \ln \frac{z_{14}^2 z_{23}^2}{z_{24}^2 z_{13}^2} \right] \\
\times \left[\text{tr}\{\hat{U}_{z_1} \hat{U}_{z_3}^\dagger\} \text{tr}\{\hat{U}_{z_3} \hat{U}_{z_4}^\dagger\} \left(\text{tr}\{\hat{U}_{z_4} \hat{U}_{z_2}^\dagger\} - \text{tr}\{\hat{U}_{z_1} \hat{U}_{z_2}^\dagger\hat{U}_{z_3} \hat{U}_{z_4}^\dagger\hat{U}_{z_2}^\dagger\hat{U}_{z_3} \hat{U}_{z_4}^\dagger\} - (z_4 \to z_3) \right) \right] \\
+ \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2} \left[2 \ln \frac{z_{12}^2 z_{34}^2}{z_{14}^2 z_{23}^2} + \left(1 + \frac{z_{12}^2 z_{34}^2}{z_{13}^2 z_{24}^2 - z_{14}^2 z_{23}^2} \right) \ln \frac{z_{13}^2 z_{24}^2}{z_{14}^2 z_{23}^2} \right] \\
\times \left[\text{tr}\{\hat{U}_{z_1} \hat{U}_{z_3}^\dagger\} \text{tr}\{\hat{U}_{z_3} \hat{U}_{z_4}^\dagger\} \text{tr}\{\hat{U}_{z_4} \hat{U}_{z_2}^\dagger\} - \text{tr}\{\hat{U}_{z_1} \hat{U}_{z_2}^\dagger\hat{U}_{z_3} \hat{U}_{z_4}^\dagger\hat{U}_{z_2}^\dagger\hat{U}_{z_3} \hat{U}_{z_4}^\dagger\} - (z_4 \to z_3) \right] \right\} \right] \\
= \frac{11}{3} N_c - \frac{2}{3} n_f \]

I. Balitsky and G.A.C

\(K_{NLO \ BK} = \text{Running coupling part} + \text{Conformal "non-analytic" (in j) part} + \text{Conformal analytic (}N = 4\text{) part} \)

Linearized \(K_{NLO \ BK} \) reproduces the known result for the forward NLO BFKL kernel Fadin and Lipatov (1998).
In proton-Nucleus and Nucleus-Nucleus collisions there are also quadrupole Wilson line operators $\text{tr}\{U_x U_y^\dagger U_w U_z^\dagger\}$.

\Rightarrow Need NLO Balitsky-JIMWLK evolution equation.
Sample of diagrams: a), b) are self-interactions; c), d) are pairwise interactions; e), f) are triple interactions.
\[\frac{d}{d\eta}(U_1)_{ij} = \frac{\alpha_s^2}{8\pi^4} \int \frac{d^2z_4d^2z_5}{z_{45}^2} \left\{ U^d_4 (U^e_5' - U^{ee'}_4) \right\} \]

\[\times \left(\left[2I_1 - \frac{4}{z_{45}^2} \right] f^{ade} f^{bd'e'} (t^a U_1 t^b)_{ij} + \left(\frac{z_{14}, z_{15}}{z_{14}^2z_{15}^2} \right) \ln \frac{z_{14}^2}{z_{15}^2} \left[\frac{1}{3} \ln z_{14}^2 \mu^2 + \frac{67}{9} - \frac{\pi^2}{3} \right] \times \frac{1}{z_{14}^2} \right) \]

\[+ \frac{\alpha_s^2 N_c}{4\pi^3} \int d^2z_4 \left(U^a_4 - U^a_1 \right) (t^a U_1 t^b)_{ij} \times \frac{1}{z_{14}^2} \left[\frac{11}{3} \ln z_{14}^2 \mu^2 + \frac{67}{9} - \frac{\pi^2}{3} \right] \]

\[I_1 \equiv I(z_1, z_4, z_5) = \frac{\ln z_{14}^2/z_{15}^2}{z_{14}^2 - z_{15}^2} \left[\frac{z_{14}^2 + z_{15}^2}{z_{45}^2} - \frac{z_{14} z_{15}}{z_{14}^2} - \frac{z_{14} z_{15}}{z_{15}^2} - 2 \right] \]
\[
\frac{d}{d\eta}(U_1)_{ij}(U_2^\dagger)_{kl} = \frac{\alpha_s^2}{8\pi^4} \int d^2 z_4 d^2 z_5 (A_1 + A_2 + A_3) + \frac{\alpha_s^2 N_c}{8\pi^3} \int d^2 z_4 (B_1 + N_c B_2)
\]
\[\mathcal{A}_1 = \left[(t^a U_1)_{ij} (U_2 t^b)_{kl} + (U_1 t^b)_{ij} (t^a U_2)_{kl} \right] \times \left[f^{ade} f^{bd' e'} U_4^{dd'} (U_5^{ee'} - U_4^{ee'}) \left(-K - \frac{4}{z_4^2} + \frac{I_1}{z_4^2} + \frac{I_2}{z_4^2} \right) \right] \]

\(K \) is the NLO BK kernel for \(\mathcal{N}=4 \) SYM

\[\mathcal{A}_2 = 4(U_4 - U_1)^{dd'} (U_5 - U_2)^{ee'} \]

\[\left\{ i \left[f^{ad'e'} (t^d U_1 t^a)_{ij} (t^e U_2)_{kl} - f^{ade} (t^a U_1 t^{d'})_{ij} (U_2 t^{e'})_{kl} \right] J_{1245} \ln \frac{z_2^{14}}{z_2^{15}} \right\} \]

\[+ i \left[f^{ad'e'} (t^d U_1)_{ij} (t^e U_2 t^a)_{kl} - f^{ade} (U_1 t^{d'})_{ij} (t^a U_2 t^{e'})_{kl} \right] J_{2154} \ln \frac{z_2^{24}}{z_2^{25}} \]

\[J_{1245} \equiv J(z_1, z_2, z_4, z_5) = \frac{(z_1 z_2 z_5)}{z_2^2 z_2^{12} z_2 z_4} - 2 \frac{(z_1 z_2 z_5)(z_1 z_2 z_5)}{z_2^2 z_2^{12} z_2 z_4} + 2 \frac{(z_2 z_4 z_5)}{z_2^2 z_2^{12} z_2 z_4}, \]
\[A_3 = 2U_{4d'}^{dd'} \left\{ i [f^{ad'e'}(U_1 t^a)_{ij} (t^d t^e U_2)_{kl} - f^{ade'}(t^a U_1)_{ij} (U_2 t^e' t^{d'})_{kl}] \right\} \]

\[\times \left[\mathcal{J}_{1245} \ln \frac{z_{24}^2}{z_{15}^2} + (J_{2145} - J_{2154}) \ln \frac{z_{24}^2}{z_{25}^2} \right] (U_5 - U_2)^{ee'} \]

\[+ \ i [f^{ad'e'}(t^d t^e U_1)_{ij} (U_2 t^a)_{kl} - f^{ade'}(U_1 t^e' t^{d'})_{ij} (t^a U_2)_{kl}] \]

\[\times \left[\mathcal{J}_{2145} \ln \frac{z_{24}^2}{z_{25}^2} + (J_{1245} - J_{1254}) \ln \frac{z_{14}^2}{z_{15}^2} \right] (U_5 - U_1)^{ee'} \right\} \]

\[\mathcal{J}_{1245} \equiv \mathcal{J}(z_1, z_2, z_4, z_5) \]

\[= \frac{(z_{24}, z_{25})}{z_{24}^2 z_{25}^2 z_{45}^2} - \frac{2(z_{24}, z_{45})(z_{15}, z_{25})}{z_{24}^2 z_{25}^2 z_{45}^2 z_{15}^2 z_{45}^2} + \frac{2(z_{25}, z_{45})(z_{14}, z_{24})}{z_{14}^2 z_{24}^2 z_{25}^2 z_{45}^2} - \frac{2(z_{14}, z_{24})(z_{15}, z_{25})}{z_{14}^2 z_{15}^2 z_{24}^2 z_{25}^2} \]
\[\mathcal{B}_1 = 2 \ln \frac{z_{14}^2}{z_{12}^2} \ln \frac{z_{24}^2}{z_{12}^2} \times \left\{ (U_4 - U_1)^{ab} i \left[f^{bde} (t^a U_1 t^d)_{ij} (U_2 t^e)_{kl} + f^{ade} (t^e U_1 t^b)_{ij} (t^d U_2)_{kl} \right] \left[\frac{(z_{14}, z_{24})}{z_{14}^2 z_{24}^2} - \frac{1}{z_{14}^2} \right] \right\} \]

\[+ (U_4 - U_2)^{ab} i \left[f^{bde} (U_1 t^e)_{ij} (t^a U_2 t^d)_{kl} + f^{ade} (t^d U_1)_{ij} (t^e U_2 t^b)_{kl} \right] \left[\frac{(z_{14}, z_{24})}{z_{14}^2 z_{24}^2} - \frac{1}{z_{24}^2} \right] \right\} \]
\[J_{12345} \equiv J(z_1, z_2, z_3, z_4, z_5) = -\frac{2(z_{14}, z_{34})(z_{25}, z_{35})}{z_{14}^2 z_{25}^2 z_{34}^2 z_{35}^2} \]

\[-\frac{2(z_{14}, z_{45})(z_{25}, z_{35})}{z_{14}^2 z_{25}^2 z_{34}^2 z_{45}^2} + \frac{2(z_{25}, z_{45})(z_{14}, z_{34})}{z_{14}^2 z_{25}^2 z_{34}^2 z_{45}^2} + \frac{(z_{14}, z_{25})}{z_{14}^2 z_{25}^2 z_{45}^2} \]
\[
\frac{d}{d\eta} (U_1)_{ij} (U_2)_{kl} (U_3)_{mn} \\
= i \frac{\alpha_s^2}{2\pi^4} \int d^2 z_4 d^2 z_5 \left\{ \mathcal{J}_{12345} \ln \frac{z_{34}^2}{z_{35}^2} \right. \\
\times f^{cde} \left[(t^a U_1)_{ij} (t^b U_2)_{kl} (t^c U_3)_{mn} (U_4 - U_1)^{ad} (U_5 - U_2)^{be} \\
- (U_1 t^a)_{ij} (U_2 t^b)_{kl} (t^c U_3)_{mn} (U_4 - U_1)^{da} (U_5 - U_2)^{eb} \right] \\
+ \mathcal{J}_{32145} \ln \frac{z_{14}^2}{z_{15}^2} \\
\times f^{ade} \left[(U_1 t^a)_{ij} (t^b U_2)_{kl} (t^c U_3)_{mn} (U_4 - U_3)^{cd} (U_5 - U_2)^{be} \\
- (t^a U_1)_{ij} \otimes (U_2 t^b)_{kl} (t^c U_3)_{mn} (U_4^{dc} - U_3^{dc}) (U_5^{eb} - U_2^{eb}) \right] \\
+ \mathcal{J}_{13245} \ln \frac{z_{24}^2}{z_{25}^2} \\
\times f^{bde} \left[(t^a U_1)_{ij} (U_2 t^b)_{kl} (t^c U_3)_{mn} (U_4 - U_1)^{ad} (U_5 - U_3)^{ce} \\
- (U_1 t^a)_{ij} (t^b U_2)_{kl} (t^c U_3)_{mn} (U_4 - U_1)^{da} (U_5 - U_3)^{ec} \right]. \\
\right\}
\]
Dynamics of QCD at high-energy is non-linear.

Scattering amplitudes at high-energy and high-density QCD are factorized in rapidity space using the high-energy OPE in Wilson lines.

BK and B-JIMWLK evolution equations include the energy dependence to scattering amplitude at high energy.

NLO BK and NLO Balitsky hierarchy of evolution equation (NLO B-JIMWLK) has been presented.