Dihadron angular correlations in PbPb collisions with HYDJET++ model

Gyuilnara Eyyubova, (FNSPE, Czech Technical University in Prague, SINP MSU), V. Korotikh, I. Lokhtin, S. Petrushanko, A. Snigirev (SINP MSU), L. Bravina, E. Zabrodin (University of Oslo)

The hybrid model HYDJET++, which includes soft and hard physics, is employed for the analysis of azimuthal anisotropy harmonics and dihadron angular correlations measured in PbPb collisions at √s_{NN} = 2.76 TeV. The soft part of the model represents a thermal hadron production at the freeze-out hypersurface in accordance with hydrodynamical calculations. The possible triangular shape fluctuation of the initial overlap density of the colliding nuclei was implemented in HYDJET++ by the modulation of the final freeze-out hypersurface with the appropriate triangular coefficient, which results in triangular flow \(v_3 \).

Along with elliptic flow \(v_2 \), it generates higher order flow coefficients, as well as a specific structure of dihadron angular correlations on relative azimuthal angle in a broad range of relative pseudorapidities (\(ΔφΔη \)). The comparison of model results with the LHC data on short- and long-range angular correlations is presented for different collision centralities and transverse momentum intervals.

HYDJET++ model

1. Hard part
 - Initial parton configuration
 - Initial hadronization
 - Hadronization
 - Parton recombination & energy transfer

2. Soft part
 - Hadronization at freeze-out stage with distribution function:
 - Flow (v_2, v_3)
 - Space modulation of freeze-out surface:
 - and modulation of 4-velocity at freeze-out stage:

Flow
- Due to jet quenching.
- Only elliptic flow.

Flow and dihadron correlations:
- Short-range correlations only in PbPb collisions.
- HYDJET++ describes data.
- Test of factorization: \[V_{ij} = v_2(z_2)p_T(z_2)v_3(z_1)p_T(z_1) \]
- It is found that \(j \) correlation from PYTHIA simulation of \(jj \) collisions also approximately factorizes.

CONCLUSIONS:
- In HYDJET++ single-particle flow \(v_2 \) and \(v_3 \) are tuned to describe data at low \(p_T \).
- The resulting from \(v_2 \) and \(v_3 \) interference higher order flow harmonics describes data at semi-central collisions well but underestimate data at more central events.
- Similarly it has been found that dihadron correlations (both long-range and short-range) are described well at semi-central collisions.
- The factorization of Fourier coefficients of dihadron correlation onto single-particle flow coefficients at low \(p_T \) may be fulfilled also in a presence of non-flow (or other than flow sources of correlation).