Initial state geometry and fluctuations in deformed and asymmetric nuclear collisions in the IP-Glasma framework

Prithwish Tribedy
Variable Energy Cyclotron Center, Kolkata, India

in collaboration with Björn Schenke (BNL) and Raju Venugopalan (BNL)

May 19, 2014

Quark Matter 2014, Darmstadt, Germany
Introduction

In this work we address:

▶ the role of initial geometry and fluctuations on global observables.
▶ how to constrain mechanism of multi-particle production in A+A collisions.

We study:

▶ Systems with varying initial geometry (deformed nuclei)
▶ Event-by-event fluctuation of multiplicity, eccentricity & their correlation.
Modelling multi-particle production

Approach-I:
Monte Carlo Glauber (MC-Glauber) model combining,
 ▶ Geometry of collisions,
 ▶ Two-component model with negative-binomial fluctuation.
→ MC-Glauber+NBD initial condition.

Approach-II:
Ab initio Color Glass Condensate (CGC) framework combining,
 Saturation model of HERA DIS to construct hadron/nuclear wave-functions (IP-Sat model).
 Classical Yang-Mills description to calculate gluon field after collisions (Glasma description).
→ IP-Glasma initial condition.
MC-Glauber model

Multiplicity is computed from the expression:

$$\frac{dN}{d\eta} = n_{pp} \left(xN_{\text{coll}} + (1-x)\frac{N_{\text{part}}}{2} \right),$$

$$n_{pp} = 2.5 - 0.25 \ln(s_{\text{NN}}) + 0.023 \ln^2(s_{\text{NN}}) \rightarrow \text{avg no. of ch. particles.}$$

$$x \rightarrow \text{“hardness” scale, } N_{\text{coll}} \rightarrow \text{binary collisions, } N_{\text{part}} \rightarrow \text{participants.}$$

Intrinsic correlation between the multiplicity and the initial shape.

Multiplicity fluctuation is introduced as:

$$P_n^{NB}(\bar{n}, k) = \frac{\Gamma(k+n)}{\Gamma(k)\Gamma(n+1)} \frac{\bar{n}^n k^k}{(\bar{n}+k)^{n+k}}.$$

Each n-n collision as identical sources with mean \bar{n} & width $\sim 1/k$

\rightarrow no unique implementation (x, k are free parameters)
Modelling multi-particle production

Approach-I:
Monte Carlo Glauber (MC-Glauber) model combining,

Geometry of collisions,

Two-component model with negative-binomial fluctuation.

→ MC-Glauber+NBD initial condition.

Approach-II:
Ab initio Color Glass Condensate (CGC) framework combining,

- Saturation model of HERA DIS to construct hadron/nuclear wave-functions (*IP-Sat* model).
- Classical Yang-Mills description to calculate gluon field after collisions (*Glasma* description).

→ IP-Glasma initial condition.
IP-Sat : Color charge distribution inside Nuclei

IP-Sat (Impact Parameter dependent saturation) parametrization HERA DIS → proton-dipole scattering matrix $S^p_{\text{dip}}(r_\perp, x, b_\perp) \sim \exp(-r^2 Q^2_{sp}/2)$

The nuclear scattering matrix is obtained as

$$S^A_{\text{dip}}(r_\perp, x, b_\perp) = \prod_{i=0}^{A} S^p_{\text{dip}}(r_\perp, x, b_\perp)$$

$i \rightarrow$ nucleons are distributed according to Fermi distribution.

$S^A_{\text{dip}} \rightarrow$ distribution of nuclear saturation scale $Q_s(b_\perp, x)$ solving:

$$S^A_{\text{dip}}(r_\perp = r_S, x, b_\perp) = \exp(-1/2) \implies Q^2_s = \frac{2}{r^2_S}$$

Iteratively solving $x = \frac{Q_s(b_\perp, x)}{\sqrt{s}} \rightarrow Q_s(b_\perp, \sqrt{s})$

Lumpy color charge density distribution $g^2\mu(x_\perp) \sim Q_s(x_\perp)$

Kowalski, Lappi, Venugopalan 0705.3047
Lappi, arXiv:0711.3039, 1104.3725

Prithwish Tribedy Quark Matter 2014, Darmstadt, Germany
One solves

\[[D_\mu, F^{\mu\nu}] = J^\nu \]

In the presence of color current

\[J_{A,B}^\nu \approx \delta(x^\perp)\rho(x^\perp)\delta^\nu\pm \]

\(\rho(x^\perp) \) sampled from local Gaussian distribution \(W[\rho] \)

\[\langle \rho^a(x^\perp)\rho^b(y^\perp) \rangle = \delta^{ab}\delta^2(x^\perp-y^\perp)g^2\mu^2(x^\perp) \]

The field after collision at \(\tau = 0 \)

\[A^i = A^i(A) + A^i(B), \quad A^\eta = \frac{ig}{2} [A^i(A), A^i(B)] \]

Evolution at \(\tau > 0 \) according to

\[[D_\mu, F^{\mu\nu}] = 0 \]
IP-Glasma : Multiplicity and Energy density

E-by-E soln. of CYM equation on 2+1D lattice $\rightarrow F^{\mu\nu}(\tau, x_\perp, \eta)$.

- **Multiplicity (n):** In the transverse Coulomb Gauge at $\tau = 0.4$ fm:

$$
\frac{dN_g}{dy} = \frac{2}{N^2} \int \frac{d^2k_T}{\tilde{k}_T} \left[\frac{g^2}{\tau} \text{tr} (E_i(k_\perp)E_i(-k_\perp)) + \tau \text{tr} (\pi(k_\perp)\pi(-k_\perp)) \right]
$$

- **Energy density (ϵ):** $F^{\mu\nu} \rightarrow T^{\mu\nu}$ (stress energy tensor).

$$
T^{\mu\nu} = -g^{\gamma\delta} F^{\mu}_\gamma F^{\nu}_\delta + \frac{1}{4} g^{\mu\nu} F^{\gamma}_\delta F^{\delta}_\gamma
$$

solving eigen value eq. $u_\mu T^{\mu\nu} = \epsilon u^\nu$ gives ϵ and flow u^ν

Gale, Jeon, Schenke, Tribedy, Venugopalan 1209.6330
Correlated multi particle production from disconnected diagrams connected by color averaging.

2-particle correlation \rightarrow ridge.

n-particle correlation \rightarrow negative-binomial fluctuation.

Yang-Mills introduces non-local gauge-field correlation over length scale $1/Q_s \rightarrow$ Glasma flux tube picture.

\rightarrow IP-Glasma generates negative-binomial fluctuation non-perturbatively. (no need to put by hand)
Initial geometry and fluctuations in A+A

IP-Glasma provides good description of initial geometry and fluctuations in p+p, p+A, A+A.

In the same framework we study (asymmetric) Cu+Au and (deformed) U+U nuclear collisions.
Sampling deformed collisions at RHIC

The Woods-Saxon distribution

\[\rho(r) = \frac{\rho_0}{1 + \exp \left(\frac{[r - R']}{a} \right)} \]

\[R' = R \left[1 + \beta_2 Y_2^0(\theta) + \beta_4 Y_4^0(\theta) \right] \]

4 more d.o.f in addition to impact parameter → additional fluctuations.
Tip–Tip (\(\Theta_1 = \Theta_2 = 0\)), Side-Side (\(\Theta_1 = \Theta_2 = \Phi_1 = \Phi_2 = \pi/2\))
Energy density (ϵ) from IP-Glasma model (at $\tau = 0$)

Schenke, Tribedy, Venugopalan 1403.2232

Au+Au (no-deformation)
Au+Au (side-side deformed)
Cu+Au (asymmetric)

Prithwish Tribedy
Quark Matter 2014, Darmstadt, Germany
12/23
Energy density (ϵ) from IP-Glasma model (at $\tau = 0$)

Schenke, Tribedy, Venugopalan 1403.2232
Correlation between geometry and multiplicity

Glauber

\[\frac{dN}{d\eta} \sim x N_{\text{coll}} + (1-x) N_{\text{part}} / 2 \]

\[N_{\text{coll}} = \begin{cases} 16 & \text{small} \\ 4 & \text{large} \end{cases} \]

\[N_{\text{part}} = \begin{cases} 8 & \text{small} \\ 8 & \text{large} \end{cases} \]

\[\frac{dN}{d\eta} \uparrow \varepsilon_2(v_2) \downarrow \]

\[\frac{dN}{d\eta} \downarrow \varepsilon_2(v_2) \uparrow \]

strong correlation
Correlation between geometry and multiplicity

Glauber

\[\frac{dN}{d\eta} \sim x N_{\text{coll}} + (1-x) \frac{N_{\text{part}}}{2} \]

- \(N_{\text{coll}} = 16 \)
- \(N_{\text{part}} = 8 \)

\(N_{\text{coll}} = 4 \)

- \(N_{\text{coll}} = 4 \)
- \(N_{\text{part}} = 8 \)

CGC

\[\frac{dN}{d\eta} \sim Q_{S,\text{min}}^2 S_\perp / \alpha_s(Q_{S,\text{min}}^2) \]

\[\frac{dN}{d\eta} \sim (4Q_{SP}^2 \times S_\perp) / \alpha_s(4Q_{SP}^2) \]

\[\frac{dN}{d\eta} \sim 4 \times (Q_{SP}^2 \times S_\perp) / \alpha_s(Q_{SP}^2) \]

- \(x(4 S) \)
- \(S P^2 Q \)
- \(x S P^2 (Q S) \)
- \(S,\text{min} \)

\[dN/d\eta \uparrow \varepsilon_2(v_2) \downarrow \]

- strong correlation (linear)

\[dN/d\eta \downarrow \varepsilon_2(v_2) \uparrow \]

\[\sim dN/d\eta \varepsilon_2(v_2) \downarrow \]

\[\sim dN/d\eta \varepsilon_2(v_2) \uparrow \]

- weak correlation (logarithmic)
Multiplicity : centrality dependence

- Local Running coupling on each point on lattice $\alpha_s(k_\perp)$

Larger systems \rightarrow smaller multiplicity per participants.
U+U min-bias & tip-tip are very close unlike 2-component model.
A plateau for Cu+Au at central events.
Eccentricity for different systems

The spatial eccentricities that characterize the geometry

\[\varepsilon_n = \frac{\sqrt{\langle r^n \cos(n\phi) \rangle^2 + \langle r^n \sin(n\phi) \rangle^2}}{\langle r^n \rangle}, \langle \cdots \rangle \rightarrow \text{weight } \varepsilon(x_\perp, \tau) \]

- \(\varepsilon_2 \) very sensitive to initial geometry of colliding system.
- Tip-tip for U+U \(\leftrightarrow \) Au+Au
- MC-KLN given largest \(\varepsilon_2 \) but consistent at large \(N_{\text{part}} \).
Higher order moments of ϵ_n

Fluctuation driven moments are very similar for different systems. Universal $\sim 1/N$ like trend for odd moments.
Even-by-event fluctuation of eccentricities

Event-by-event fluctuation of ε_n provided decisive test for models of initial condition at LHC.

→ The same can be true at RHIC (cumulants are measured so far).

Universal distribution towards most central events (mean \propto width).
Smaller system \rightarrow larger fluctuations.
IP-Glasma \rightarrow smaller width compared to MC-Glauber results.
Correlation of multiplicity and eccentricities

Full overlap events → very low spectators and very high multiplicity. The STAR results → ultra-central $U + U$ and $Au + Au$ collisions. → selected using a combined cuts on multiplicity and ZDC (spectators)

Heinz and Kuhlman nucl-th/0506088

see H.Wang’s talk

H.Wang, P.Sorensen, Hard Probes 2013
Correlation between multiplicity and ellipticity

Select ultra-central (full overlap) events using cuts on neutron numbers. → combination of tip-tip or side-side events

▶ Stronger anti-correlation in MC-Glauber compared to IP-Glasma
Correlation between multiplicity and ellipticity

Select ultra-central (full overlap) events using cuts on neutron numbers. → combination of tip-tip or side-side events

Stronger correlation in MC-Glauber compared to IP-Glasma

Opposite slope for ultra-central Au+Au events.

→ comparison data can constrain the dependence of geometry on multiplicity
Summary

- Asymmetric (Cu+Au) and deformed (U+U) nuclear collisions are studied in IP-Glasma and two-component MC-Glauber framework.
- Eccentricity found to be sensitive to different A+A collision geometries.
- Fluctuation driven moments of ε_n are similar for different A+A systems.
- Probability distribution of $\varepsilon_n(\nu_n)$ can constrain models of initial condition at RHIC.
- Correlation between multiplicity and eccentricity can further constrain models of initial conditions.