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Abstract

The most fundamental way to compute properties of the strongly coupled quark-gluon
plasma (QGP) is provided by the lattice QCD. Interpretation of these complicated
computations requires application of various QCD motivated models simulating vari-
ous aspects of the full theory. More over these models are needed in cases when the
lattice QCD fails, e.g. at large baryon chemical potentials and out of equilibrium. A
quasi-particle model has been recently introduced in literature. It is expected that it
allows to treat soft processes in the QGP which are not accessible by the perturbative
means and the main features of non-Abelian plasmas can be understood without the
difficulties inherent to quantum field theory.
For quasi-particle QGP model we propose stochastic simulation of thermo-
dynamics and kinetic properties in the wide region of temperature, density and
quasi-particles masses. We extend previous classical simulations based on a color
Coulomb interaction to the relativistic quantum regime. In grand canonical ensemble
for finite and zero baryon chemical potential we use the direct quantum path integral
Monte Carlo method (PIMC) within Feynman formulation of quantum mechanics. For
the strongly correlated QGP we have done calculations of equation of state, spatial
and color pair distribution functions, diffusion coefficients and shear viscosity.
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