Production of J/ψ and Υ mesons in proton-lead collisions at $\sqrt{s_{NN}} = 5$ TeV

Zhenwei YANG
Tsinghua University, Beijing

on behalf of the LHCb collaboration

21 May, 2014
Outline

- The LHCb detector and pPb data taking
- Physics motivation
- J/ψ production and nuclear effects in pPb at 5 TeV
 [JHEP 02 (2013) 072]
- $\Upsilon(nS)$ production and nuclear effects in pPb at 5 TeV
 [arXiv:1405.5152]
- Summary and prospects
LHCb detector

Dedicated to beauty and charm physics

Pseudorapidity acceptance $2 < \eta < 5$

beam 2

beam 1

can also contribute to heavy-ion physics ...
LHCb in a nutshell

Impact parameter: \(\sigma_{IP} = 20 \, \mu m \)
Proper time: \(\sigma_\tau = 45 \, \text{fs} \) for \(B_s^0 \rightarrow J/\psi \phi \) or \(D_s^+ \pi^- \)
Momentum: \(\Delta p/p = 0.4 \sim 0.6\% \) (5 – 100 GeV/c)
Mass: \(\sigma_m = 8 \, \text{MeV}/c^2 \) for \(B \rightarrow J/\psi X \) (constrained \(m_{J/\psi} \))
RICH \(K \rightarrow \pi \) separation: \(\epsilon(K \rightarrow K) \sim 95\% \) mis-ID \(\epsilon(\pi \rightarrow K) \sim 5\% \)
Muon ID: \(\epsilon(\mu \rightarrow \mu) \sim 97\% \) mis-ID \(\epsilon(\pi \rightarrow \mu) \sim 1 \sim 3\% \)
ECAL: \(\Delta E/E = 1 \oplus 10\%/\sqrt{E(\text{GeV})} \)

\(\gamma(1S) \) JHEP 06 (2013) 064
\(\gamma(2S) \)
\(\gamma(3S) \)
Beam configuration

- Asymmetric beam energy
 - $E_p = 4$ TeV
 - $E_N = 1.58$ TeV for lead beam
 - $\sqrt{S_{NN}} = 5$ TeV
 - Rapidity shift $\Delta y = \pm 0.465$

- Rapidity coverage (in NN c.m.s. frame)
 - Forward direction (pPb)
 - $1.5 < y < 4.0$
 - Backward direction (Pbp)
 - $-5.0 < y < -2.5$

- Common coverage
 - $2.5 < |y| < 4.0$
2013 pPb data taking

- $\sqrt{s_{NN}} = 5$ TeV
- Low instantaneous luminosity ($\sim 5 \times 10^{27}$ cm$^{-2}$s$^{-1}$)
- Low pile-up
- Four configurations: pPb (Pbp), Magnet Up(Down)

Integrated luminosity after data quality:
Forward (pPb) : 1.1 nb$^{-1}$
Backward (Pbp): 0.5 nb$^{-1}$
Event display and track multiplicity

- Magnetic Up/Down agree for both pPb and Pbp
- Higher multiplicities in Pbp as expected
Physics motivation

- pA collisions are important to study **cold nuclear matter effects**
- Cold nuclear matter effects are of great interest by themselves, in addition to QGP studies
- Insight to unexplored region of QCD phenomena
- Constrain nuclear Parton Density Function at low x over wide Q^2
- LHCb can play an important role
- Unique rapidity coverage with **full particle identification**

Heavy quarkonia suppression in pA

- Important probes of QGP, and also
- Sensitive to cold nuclear matter effects
 - Strongly suppressed in pA collisions at large rapidity
- Cold nuclear matter effects characterized by

Nuclear modification factor:

$$R_{pA}(y, \sqrt{S_{NN}}) = \frac{1}{A} \cdot \frac{\frac{d\sigma_{pA}}{dy}(y, \sqrt{S_{NN}})}{\frac{d\sigma_{pp}}{dy}(y, \sqrt{S_{NN}})}$$

Forward-backward production ratio:

$$R_{FB}(y, \sqrt{S_{NN}}) = \frac{\sigma_{pA}(+|y|, \sqrt{S_{NN}})}{\sigma_{pA}(-|y|, \sqrt{S_{NN}})}$$
J/ψ production and cold nuclear matter effects in $p\text{Pb}$ collisions at $\sqrt{s_{NN}} = 5$ TeV

[JHEP 02 (2014) 072]
Analysis strategy

- Reconstructed using $J/\psi \rightarrow \mu^+ \mu^-$ decay channel

- Measurement performed in bins of p_T and y

$$\frac{d^2\sigma}{dp_Tdy} = \frac{N_{\text{corr}}(J/\psi \rightarrow \mu^+ \mu^-)}{\mathcal{L} \times \text{Br}(J/\psi \rightarrow \mu^+ \mu^-) \times \Delta p_T \times \Delta y}$$

- Three sources of J/ψ at hadron colliders
 - Direct J/ψ
 - Feed-down from heavier $c\bar{c}$ states
 - From b-hadron decays

- Prompt J/ψ and J/ψ from b separated by pseudo proper time $t_z = d_z \times \frac{M_{J/\psi}}{p_{J/\psi}}$.

Note:
Cold nuclear matter effects on J/ψ from b reflect those on b hadrons!
J/ψ signal extraction

- Yields of prompt J/ψ and J/ψ from b extracted in each (p_T, y) bin from simultaneous fit to mass and pseudo proper time t_z

Mass distribution
- Signal by Crystal Ball function
- Background by exponential

t_z distribution
- Prompt signal
 - δ-function $\otimes f_{res}$
- Non-prompt signal
 - Exponential $\otimes f_{res}$
- Background
 - Empirical functions from sidebands

<table>
<thead>
<tr>
<th>Signal yield</th>
<th>Forward</th>
<th>Backward</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prompt J/ψ</td>
<td>25,280 ± 240</td>
<td>8,830 ± 160</td>
</tr>
<tr>
<td>J/ψ from b</td>
<td>3,720 ± 80</td>
<td>890 ± 40</td>
</tr>
</tbody>
</table>
Total J/ψ cross-sections in pPb

\[\sigma_F(\text{prompt } J/\psi, +1.5 < y < +4.0) = 1,168 \pm 15 \pm 54 \text{ } \mu b \]

\[\sigma_B(\text{prompt } J/\psi, -5.0 < y < -2.5) = 1,293 \pm 42 \pm 75 \text{ } \mu b \]

\[\sigma_F(J/\psi \text{ from } b, +1.5 < y < +4.0) = 166.0 \pm 4.1 \pm 8.2 \text{ } \mu b \]

\[\sigma_B(J/\psi \text{ from } b, -5.0 < y < -2.5) = 118.2 \pm 6.8 \pm 11.7 \text{ } \mu b \]

\[(p_T < 14 \text{ GeV}/c) \]

Systematics dominated by:

- mass fit model
- luminosity
- data-MC disagreement

<table>
<thead>
<tr>
<th>Source</th>
<th>Forward (%)</th>
<th>Backward (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlated between bins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass fits</td>
<td>2.3</td>
<td>3.4</td>
</tr>
<tr>
<td>Radiative tail</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Muon identification</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Luminosity</td>
<td>1.9</td>
<td>2.1</td>
</tr>
<tr>
<td>$\mathcal{B}(J/\psi \rightarrow \mu^+\mu^-)$</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Uncorrelated between bins		
Binning	0.1 – 8.7	0.1 – 6.1
Multiplicity weight	0.1 – 3.0	0.2 – 4.3
t_z fit (only for J/ψ from b)	0.2 – 12	0.2 – 13
Single differential J/ψ cross-sections

JHEP 02 (2014) 072

Forward (pPb)

Backward (Pbp)

Forward (pPb)

Backward (Pbp)
Double differential J/ψ cross-sections

- Statistics in forward sample (pPb) allow measurements of double differential cross-section

![Graphs showing double differential cross-sections for prompt J/ψ and J/ψ from b]
Reference cross-sections in pp at $\sqrt{s} = 5$ TeV

- Input to the determination of the nuclear modification factor R_{ppb}
- Interpolated from measurements at 2.76 TeV, 7 TeV and 8 TeV
- Three different fit functions used to interpolate
 $$\frac{(\sqrt{s}/p_0)^{p_1}}{p_0 + p_1\sqrt{s}} \quad \frac{p_0(1 - e^{p_1\sqrt{s}})}{p_0}$$
 adopted as nominal
- Discrepancy between the three interpolated values taken as systematics
- Checked against functions from LO-CEM and FONLL
Nuclear modification factor R_{pPb} for J/ψ

- Strong dependence on rapidity
- J/ψ form b less suppressed in forward than prompt J/ψ
 $\Rightarrow b$ hadrons less affected by cold nuclear matter effects
- Agreement with theoretical predictions
- Precision insufficient to distinguish different models

![Graph showing R_{pPb} for J/ψ](image)

References
- JHEP 03 (2013) 122
- JHEP 03 (2013) 122
- arXiv:1402.1747
Forward-backward production ratio R_{FB}

- Independent of pp cross-sections
- Part of experimental and theoretical uncertainties cancel
- Clear difference between prompt J/ψ and J/ψ from b

JHEP 02 (2014) 072

prompt J/ψ

J/ψ from b

R_{FB}

J/ψ from b

EPS09 LO

E. loss

nDSg LO

Int. J. Mod. Phys. E22 (2013) 1330007

JHEP 03 (2013) 122

arXiv:1402.1747
Comparison with ALICE

Measurements agree with each other

LHCb-CONF-2013-013
γ production and cold nuclear matter effects in \(pPb \) collisions at \(\sqrt{s_{NN}} = 5 \) TeV

[arXiv:1405.5152]
$\Upsilon(nS)$ signal extraction

- Reconstructed using $\Upsilon(nS) \rightarrow \mu^+ \mu^-$ decay channel
- Signal modelled by three Crystal Ball functions
- Background modelled by exponential

<table>
<thead>
<tr>
<th>Signal yield</th>
<th>Forward (pPb)</th>
<th>Backward (Pbp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Upsilon(1S)$</td>
<td>189 ± 16</td>
<td>72 ± 14</td>
</tr>
<tr>
<td>$\Upsilon(2S)$</td>
<td>41 ± 9</td>
<td>17 ± 10</td>
</tr>
<tr>
<td>$\Upsilon(3S)$</td>
<td>13 ± 7</td>
<td>4 ± 8</td>
</tr>
</tbody>
</table>

arXiv:1405.5152
$\Upsilon(nS)$ cross-section in $p\text{Pb}$

- Total cross-section with $p_T < 15$ GeV/c measured
- Systematic uncertainty dominated by mass fit model, data-MC discrepancy, and trigger efficiency

\[
\begin{align*}
\sigma(\Upsilon(1S), -5.0 < y < -2.5) \times B(1S) &= 295 \pm 56 \pm 29 \text{ nb} \\
\sigma(\Upsilon(2S), -5.0 < y < -2.5) \times B(2S) &= 81 \pm 39 \pm 18 \text{ nb} \\
\sigma(\Upsilon(3S), -5.0 < y < -2.5) \times B(3S) &= 5 \pm 26 \pm 5 \text{ nb} \\
\sigma(\Upsilon(1S), 1.5 < y < 4.0) \times B(1S) &= 380 \pm 35 \pm 21 \text{ nb} \\
\sigma(\Upsilon(2S), 1.5 < y < 4.0) \times B(2S) &= 75 \pm 19 \pm 5 \text{ nb} \\
\sigma(\Upsilon(3S), 1.5 < y < 4.0) \times B(3S) &= 27 \pm 16 \pm 4 \text{ nb}
\end{align*}
\]

- Production ratios $R^{nS/1S} \equiv \frac{\sigma(\Upsilon(nS)) \times Br(\Upsilon(nS) \rightarrow \mu^+ \mu^-)}{\sigma(\Upsilon(1S)) \times Br(\Upsilon(1S) \rightarrow \mu^+ \mu^-)}$ measured $(n = 2, 3)$

\[
\begin{align*}
R^{2S/1S}(-5.0 < y < -2.5) &= 0.28 \pm 0.14 \pm 0.05 \\
R^{3S/1S}(-5.0 < y < -2.5) &= 0.02 \pm 0.09 \pm 0.02 \\
R^{2S/1S}(1.5 < y < 4.0) &= 0.20 \pm 0.05 \pm 0.01 \\
R^{3S/1S}(1.5 < y < 4.0) &= 0.07 \pm 0.04 \pm 0.01
\end{align*}
\]

consistent with pp results but limited by statistics

$R^{2S/1S}(pp) \sim 0.24$

$R^{3S/1S}(pp) \sim 0.12$
Nuclear modification factor for $\Upsilon(1S)$

- Reference pp cross-section interpolated as done for J/ψ
- Forward region: suppression smaller than prompt J/ψ, and compatible with b hadrons
- Backward region: indication of antishadowing effect
- Consistent with different theoretical models with large uncertainty

Theoretical predictions:
EPS09 LO: EPJC 73 (2011) 2427
EPS09 NLO: IJMP E22 (2013) 1330007
E. loss: JHEP 03 (2013) 122
Forward-backward production ratio R_{FB}

- Independent of pp cross-sections
- Part of experimental and theoretical uncertainties cancel
- Agreement with different theoretical models, but statistical uncertainty large

Theoretical predictions:
- EPS09 LO: EPJC 73 (2011) 2427
- EPS09 NLO: IJMP E22 (2013) 1330007
- E. loss: JHEP 03 (2013) 122
Summary and prospects

- Study of pA collisions is important for probing some unexplored QCD physics, and provides inputs for QGP studies.
- LHCb has recorded about 1.8 nb^{-1} pPb data in a unique kinematic range with full particle identification.
- Production cross-sections measured for prompt J/ψ, J/ψ from b, and $\Upsilon(nS)$.
- Nuclear modification factor R_{pPb} and forward-backward production ratio R_{FB} determined for prompt J/ψ, J/ψ from b, and $\Upsilon(1S)$.
- Measurements agree with theoretical models, but power to distinguish different models is limited by statistics.
- Further analyses under way, $\psi(2S)$, ridge effect, etc.
- Looking forward to 10-times more integrated luminosity in Run II.

Thank you!
Backup slides
Efficiency for J/ψ

Efficiencies $\epsilon_{tot} = \epsilon_{acc} \times \epsilon_{rec} \times \epsilon_{trig}$ ($\sim 45\%$)

- ϵ_{acc}: geometric acceptance
 - estimated from simulation with unpolarized J/ψ
- ϵ_{rec}: including reconstruction and selection
 - estimated from simulation
- ϵ_{trig}: trigger efficiency
 - obtained from the minimum-bias sample collected in the data