Long-range two-particle correlations with K^0_S and Λ in pPb and PbPb collisions

Zhenyu Chen
Department of Physics & Astronomy, Rice University, TX, USA
zc11@rice.edu, on behalf of the CMS collaboration

Motivation
- Observation of a significant long-range near-side two-particle correlation in pPb collisions opened a new avenue of studying novel QCD phenomena in small systems.
- In the context of hydrodynamic models, anisotropic flow (v_n) for unidentified charged particles in pPb collisions have been extensively studied by the CMS collaboration.

Identified particle v_2 in AA at RHIC

Elliptic flow (v_2) of identified particles in AA collisions at RHIC:
- Mass ordering of v_2 at p_T below 2 GeV, consistent with hydrodynamic models.
- Number of constituent quark scaling phenomena - Recombination.

V0 (K^0_S, Λ) Reconstruction and High Multiplicity Triggers
- V^0 reconstruction via topological decays in CMS silicon tracker
- Unique high-level triggers enable precise studies of PID v_n in very high multiplicity pPb events

Results
- Low multiplicity from MinBias trigger
 - No near-side ridge observed
 - Dominated by jet correlations with little species dependence
 - Mass ordering of v_2 emerges at $N\geq60$ in pPb and PbPb

High precision PID v_n data in pPb and PbPb over a broad multiplicity range

Comparison to PbPb at comparable multiplicities
- Evident mass ordering of v_2 between K^0_S and Λ with larger splitting in pPb than PbPb
- Number of constituent quark scaling for v_n holds within 10-15% in pPb at high multiplicity, which holds less well in peripheral PbPb.