Second order hydro-coefficients from lattice QCD

HELMHOLTZ GEMEINSCHAFT

Bastian B. Brandt, Anthony Francis and Harvey Meyer

Helmholtz-Institut Mainz

Introduction

The properties of Abelian and non-Abelian plasmas are the subject of intensive experimental and theoretical investigation. It is well-known that the electric force is screened by the quasifree charges of a plasma. The static force between currents however remains unscreened. The coupling constants of both forces are enhanced at long distances compared to the vacuum. In a medium the Coulomb and Ampère forces receive a factor $(1+e^2\kappa_l)$ and $(1+e^2\kappa_t)$ to their intensities. The quantity κ_t enters the constitutive equation of the electric current at second order in a 'hydrodynamic' description. It describes the enhancement of the Ampère force. We compute κ_l , κ_l and the combination $(\kappa_l - \kappa_t)$ using ab initio lattice QCD simulations. We update our recent analysis [1] by increasing statistics and adding new lattice ensembles, covering a large temperature region around the deconfinement cross-over.

Definition of κ_l , κ_l and $(\kappa_l - \kappa_t)$

At finite temperature $T\equiv 1/\beta$, the tensor decomposition of the polarization tensor into a transverse $\Pi_T(q_0^2,\vec q^2)$ and longitudinal $\Pi_L(q_0^2,\vec q^2)$ part reads

$$\Pi_{\mu\nu}(q) = P_{\mu\nu}^L(q) \,\Pi_L(q_0^2, \vec{q}^2) + P_{\mu\nu}^T(q) \,\Pi_T(q_0^2, \vec{q}^2).$$

The 'matter' part is

$$\Pi_{\mu\nu}(q) \equiv \Pi_{\mu\nu}^{\text{vac}}(q) + \Pi_{\mu\nu}^{\text{mat}}(q),$$

$$\Pi_L^{\text{mat}}(q) \equiv \Pi_L(q) - q^2 \Pi^{\text{vac}}(q^2),$$

$$\Pi_T^{\text{mat}}(q) \equiv \Pi_T(q) - q^2 \Pi^{\text{vac}}(q^2).$$

With these conventions, we may define:

$$\kappa_t = \left. \frac{\partial}{\partial (\vec{q}^2)} \Pi_T^{\text{mat}}(0, \vec{q}^2) \right|_{\vec{q} = 0}, \tag{1}$$

$$\kappa_{\ell} = \left. \frac{\partial}{\partial (\vec{q}^2)} \Pi_L^{\text{mat}}(0, \vec{q}^2) \right|_{\vec{q}=0}. \tag{2}$$

2nd order hydro-coeff. from lattice

In lattice QCD Eqs. (1,2) lead to definitions of κ_l , κ_l and $(\kappa_l - \kappa_t)$ in terms of integrals over lattice correlation functions:

$$\kappa_t = -\int_0^\infty dx \, x^2 \, \Delta G_t(x, T),\tag{3}$$

$$\Delta G_t(x,T) \equiv G_t(x,T) - G(x,0),$$

$$\kappa_l = -\int_0^\infty dx \, x^2 \, \Delta G_l(x, T), \tag{4}$$

$$\Delta G_l(x,T) \equiv G_l(x,T) - G(x,0),$$

$$\kappa_l - \kappa_t = -\int_0^\infty dx \, x^2 \, \Delta G_{l-t}(x, T), \qquad (5)$$

$$\Delta G_{l-t}(x, T) \equiv G_l(x, T) - G_t(x, T),$$

whereby the correlators $G_l(x,T)$, $G_t(x,T)$ and G(x,0) are defined in Eqs. (6-8).

More details in

[1] B. B. Brandt, A. Francis and H. B. Meyer, "Antiscreening of the Ampere force in QED and QCD plasmas,"

Phys. Rev. D 89 (2014) 034506

Numerical setup

All numerical results were obtained on a number of lattice ensembles using the Wilson-Clover action with fixed bare parameters. This enables a temperature scan by varying the temporal extent of the lattice.

$6/g_0^2$	5.50	$m_{\pi}[MeV]$	270
κ	0.13671	Z_V	0.768(5)
c_{SW}	1.751496	a[fm]	0.0486(4)(5)

$N_t \times 64^3$	N_{conf}	N_{src}	T[MeV]
128	132	4	32(1)
24	206	64	169(3)
20	297	64	203(4)
16	313	65	253(4)
12	269	65	338(6)
242016	206297313	64 64 65	169(3) 203(4) 253(4)

Note: New ensembles $(N_t=24,20,12)$ and increased statistics $(N_{src}>1)$ compared to [1]

Lattice correlators

We compute the local-conserved vector correlation functions:

$$G(x_0) = \frac{1}{3} a^3 Z_V \sum_{(\vec{x})} \langle J_k^c(x) J_k^\ell(0) \rangle \tag{6}$$

$$G_t(x_3) = \frac{1}{2} a^3 Z_V \sum_{(\tilde{x})} \langle J_i^c(x) J_i^\ell(0) \rangle \tag{7}$$

$$G_l(x_3) = a^3 Z_V \sum_{(\tilde{x})} \langle J_0^c(x) J_0^\ell(0) \rangle \tag{8}$$

with:
$$J_{\mu}^{l}(x) = \bar{q}(x)\gamma_{\mu}q(x)$$

$$J_{\mu}^{c}(x) = -\frac{1}{2} \Big(\bar{q}(x + a\hat{\mu})(1 + \gamma_{\mu}) U_{\mu}^{\dagger}(x) q(x) - \bar{q}(x)(1 - \gamma_{\mu}) U_{\mu}(x) q(x + a\hat{\mu}) \Big).$$

For the long tail of the integrations in Eqs. (3-5) the data is extended by a simple exponential Ansatz (shaded bands):

Integrands for κ_l , κ_l and $(\kappa_l - \kappa_t)$

To compute κ_l , κ_l and $(\kappa_l - \kappa_t)$ we form the appropriate differences of lattice correlators and fold with x^2 to obtain the integrands of Eqs. (3-5). The subsequent numerical integration yields our final results.

Results and summary

$\overline{N_t}$	κ_t	κ_t	$(\kappa_t - \kappa_t)$
24	0.0283(15)	0.0365(10)	0.0082(9)
20	0.0318(15)	0.0425(12)	0.0107(7)
16	0.0343(14)	0.0701(14)	0.0358(2)
12	0.0557(14)	0.0889(14)	0.0323(1)
free			0.0253
16[1]	0.0400(39)	0.0750(34)	0.0350(24)

- We computed κ_l , κ_l and $(\kappa_l \kappa_t)$ using lattice QCD with very high accuracy.
- We updated our recent analysis [1] by increasing statistics.
- We extended the covered temperature range across the cross-over region, $169 \lesssim T \lesssim 339 {\rm MeV}.$