Elliptic flow of identified particles in Pb-Pb collisions at the LHC

A. Dobrin
Utrecht University
for the ALICE Collaboration

- Why elliptic flow?
- ALICE
 - Particle identification
- Flow analysis methods
- Results
- Summary
Why elliptic flow?

\[
E \frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2 v_n \cos \left(n \left(\varphi - \Psi_n \right) \right) \right)
\]

\[
v_n = \langle \cos \left(n \left(\varphi - \Psi_n \right) \right) \rangle
\]

- Elliptic flow (v_2) is sensitive to the system evolution
 - Constrains the initial conditions, deconfined phase, particle production mechanisms
- Identified particle v_2 allows for precision measurements
 - Adds further constraints to initial conditions, deconfined phase, particle production mechanisms
 - Probes the freeze-out conditions of the system (temperature, radial flow, ...)
 - Checks the number of constituent quarks (NCQ) scaling

A Large Ion Collider Experiment

- Inner Tracking System (ITS)
 - Tracking, triggering and vertex determination
- Time Projection Chamber (TPC)
 - Tracking and particle identification based on specific energy loss
- Time-of-Flight (TOF)
 - Particle identification based on the arrival time
- V0-A (2.8<\eta<5.1) and V0-C (-3.7<\eta<-1.7)
 - Triggering and centrality determination

Data sample:
- Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV
 - ~15M events analyzed
- Tracks used:
 - -0.8 < \eta < 0.8 (\pi^\pm, K^\pm, p, \phi)
 - -0.5 < y < 0.5 (K_s^0, \Lambda, \Xi, \Omega)
 - 0.2 < p_T < 6 \text{ GeV}/c
- Do not differentiate between particle and antiparticle
Particle identification

- π^\pm, K^\pm, p identified using TPC and TOF
 \[N_{\sigma,PID}^2 = N_{\sigma,TPC}^2 + N_{\sigma,TOF}^2 \]
 \[N_{\sigma,PID} < 3 \]
- Topological reconstruction for strange and multi-strange particles
Flow analysis methods

- v_2 of π^\pm, K^\pm, p is directly measured using the scalar product method
 - Hits measured by V0-A ($2.8<\eta<5.1$) and V0-C ($-3.7<\eta<-1.7$) detectors are used as reference particles (RPs)
 - Large η gap between particles of interest and RPs to suppress non-flow

- v_2 of K_s^0, Λ, ϕ, Ξ, Ω is determined using the v_2 vs invariant mass method:
 $v_2^{\text{Tot}}(m_{\text{inv}}) = v_2^{\text{Sgn}} \frac{N^{\text{Sgn}}}{N^{\text{Tot}}(m_{\text{inv}})} + v_2^{\text{Bg}} \frac{N^{\text{Bg}}}{N^{\text{Tot}}(m_{\text{inv}})}$
 - The yields N^{Sgn} and N^{Bg} are extracted from fits of the invariant mass distributions
 - The $v_2^{\text{Tot}}(m_{\text{inv}})$ is measured using the scalar product method

\[
v_2 = \sqrt{\frac{\langle \bar{u} \cdot \mathbf{Q}_A^* \rangle \langle \bar{u} \cdot \mathbf{Q}_C^* \rangle}{\langle \mathbf{Q}_A \cdot \mathbf{Q}_C^* \rangle}}
\]
Identified particle v_2

ALICE, arXiv:submit/0981508

<table>
<thead>
<tr>
<th>0-5%</th>
<th>5-10%</th>
<th>10-20%</th>
<th>20-30%</th>
<th>30-40%</th>
<th>40-50%</th>
<th>50-60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_2 $</td>
<td>p_T</td>
<td>> 0.9$</td>
<td>v_2 $</td>
<td>p_T</td>
<td>> 0.9$</td>
<td>v_2 $</td>
</tr>
</tbody>
</table>

ALICE

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

$|\eta| < 0.8$

and $|y| < 0.5$

Particle species

- π^\pm
- K^\pm
- K^0_s
- $p+\bar{p}$
- ϕ
- $\Lambda+\bar{\Lambda}$
- $\Xi^-+\Xi^+$
- $\Omega^-+\bar{\Omega}^+$
Identified particle v_2

- Small difference between v_2 for K^\pm and K_s^0
 - Physics mechanism/detector effect responsible not understood yet
 - v_2 for K^\pm and K_s^0 averaged for $p_T<4.0$ GeV/c in the following slides
- For $p_T<2$ GeV/c: observe mass ordering indicative of radial flow
- For $p_T\sim2-3.5$ GeV/c: crossing between v_2 of p and π^\pm
- For $p_T>3$ GeV/c: particles tend to group into mesons and baryons
 - v_2 of ϕ follows baryons for central collisions and shift progressively to mesons for peripheral collisions
Comparison with hydrodynamical calculations (π^\pm, p, Λ)

- Hydrodynamical calculations (MC-KLN, $\eta/s=0.16$) coupled to a hadronic cascade model (VISHNU) reproduce the main features of v_2 for $p_T<2$ GeV/c
 - Underestimates the v_2 for π^\pm
 - Underpredicts the v_2 for p
 - Overestimates the v_2 for Λ
 - Mass ordering is broken in the model

VISHNU: PRC 89, 034919 (2014)
Comparison with hydrodynamical calculations (K, ϕ, Ξ)

- Hydrodynamical calculations (MC-KLN, $\eta/s=0.16$) coupled to a hadronic cascade model (VISHNU) reproduce the main features of v_2 for $p_T<2$ GeV/c
 - Describes fairly well the v_2 for K
 - Overestimates the v_2 for Ξ
 - Overpredicts the v_2 for ϕ
 - Mass ordering is broken in the model

VISHNU: PRC 89, 034919 (2014)
p_T/n_q scaling?

- For $p_T/n_q > 1$-1.5 GeV/c: particles tend to group according to their type
 - ϕ does not follow the band of mesons for central collisions
- For $p_T/n_q > 1$ GeV/c: NCQ scaling is only approximate
p_T/n_q scaling?

- For $p_T/n_q > 1$ GeV/c: NCQ scaling deviations at the order of ±20%
 - Similar magnitude for all centrality classes
KE_T/n_q scaling?

$$KE_T = m_T - m_0 \quad m_T = \sqrt{p_T^2 + m_0^2}$$

- For $KE_T/n_q<0.6-0.8$ GeV/c^2: significant deviations from NCQ scaling are seen in data
- For $KE_T/n_q>0.8$ GeV/c^2: NCQ scaling, if any, is only approximate
KE_T/n_q scaling?

\[KE_T = m_T - m_0 \quad m_T = \sqrt{p_T^2 + m_0^2} \]

- For $KE_T/n_q < 0.6$-0.8 GeV/c^2: NCQ scaling is broken at the LHC
- For $KE_T/n_q > 0.8$ GeV/c^2: NCQ scaling deviations at the level of ±20%
 - Similar magnitude for all centrality classes
“NCQ Scaling” from RHIC to LHC

- Deviations at intermediate p_T are qualitatively similar at LHC and RHIC
 - Evolution is different for π and K
Summary

- v_2 for π^\pm, K^\pm, p, K_s^0, Λ, ϕ, Ξ, Ω is measured in Pb-Pb collisions using the ALICE detector
 - Observe mass ordering for $p_T<2$ GeV/c
 - Crossing between v_2 of p and π for $p_T\sim 2-3.5$ GeV/c
 - Particles tend to group into mesons and baryons for $p_T>3$ GeV/c
 - v_2 of ϕ follows baryons for central collisions and shift to mesons for peripheral collisions
- Hydrodynamical calculations (MC-KLN, $\eta/s=0.16$) coupled to a hadronic cascade model describe qualitatively the measurements
- Observe deviations from NCQ scaling at the level of $\pm 20\%$
Thanks!
Back up
\(v_2\) from RHIC to LHC

- Different methods used → comparison difficult
 - \(v_2\) for \(\pi^\pm\) and K measured at the LHC is above the RHIC results
 - \(v_2\) of p is slightly lower for \(p_T < 2.0\)-2.5 GeV/c, but higher for \(p_T > 2.5\) GeV/c at LHC than at RHIC