Searches for azimuthal flow in pp, p-Pb and Pb-Pb collisions

Anthony Timmins for the ALICE Collaboration
Motivation

- Double ridge observed in p-Pb collisions
 - Few or many particle correlations?

- Flow cumulants sensitive to multi-particle correlations
 - How do they compare to Pb-Pb at same multiplicity?

- Mass dependence of v_2 observed in Pb-Pb collisions
 - Interplay of radial and elliptic flow
 - What happens in pp and p-Pb collisions?

ALICE PID flow paper just submitted to arivx
p-Pb and Pb-Pb results to be submitted this week
Experimental details

- Minbias triggering based on V0s (forward detectors), High multiplicity on SPD (Silicon Pixel Detector)

- Tracking uses TPC and SPD

- Integrated $h^\pm v_n$
 - $0.2 < p_T < 3$ GeV/c
 - $|\eta_{lab}| < 1$
 - N_{ch} uses same cuts, corrected for efficiency

- Differential PID $v_2(p_T)$
 - TPC dE/dx and TOF for PID
 - $|\Delta \eta| > 0.8$ for non-flow suppression, $|\eta_{lab}| < 0.8$

### System	Collision energy
pp | $\sqrt{s} = 7$ TeV
p-Pb | $\sqrt{s_{NN}} = 5.02$ TeV
Pb-Pb | $\sqrt{s_{NN}} = 2.76$ TeV
Flow cumulants and coefficients

- Cumulants formed from v_n moments. Moments from multi-particle correlations ($n=$flow harmonic, $<v_n^m>=<m>$).

$$c_n\{2\} = \langle\langle 2\rangle\rangle$$
$$c_n\{4\} = \langle\langle 4\rangle\rangle - 2\langle\langle 2\rangle\rangle^2$$
$$c_n\{6\} = \langle\langle 6\rangle\rangle - 9\langle\langle 4\rangle\rangle\langle\langle 2\rangle\rangle + 12\langle\langle 2\rangle\rangle^3$$

- Methods have different sensitivity to flow fluctuations and non-flow

- If non-flow dominates, naively expected to scale with Multiplicity (M) as:

$$c_n\{m\} \propto \frac{1}{M^{m-1}}$$

- Flow coefficients formed from cumulants

$$v_n\{2\} = \sqrt{c_n\{2\}}$$
$$v_n\{4\} = \sqrt[4]{-c_n\{4\}}$$
$$v_n\{6\} = \sqrt[6]{\frac{1}{4}c_n\{6\}}$$
\(c_2 \{2\} \) in p-Pb and Pb-Pb

\[v_2 \{2\} = \sqrt{c_2 \{2\}} \]

- p-Pb \(c_2 \{2\} \) rises for large \(\Delta \eta \) gap. Inconsistent with naïve expectations of non-flow

- Pb-Pb \(c_2 \{2\} \) values bigger at same \(N_{ch} \).
 - \(\varepsilon_2 \) (Pb-Pb) \(_{RMS} \) driven by geometry & fluctuations.
 - \(\varepsilon_2 \) (p-Pb) \(_{RMS} \) by just fluctuations?
$c_2\{4\}$ in p-Pb and Pb-Pb

\[v_2\{4\} = \frac{4}{c_2\{4\}} \]

- p-Pb $c_2\{4\}$ switches from pos. to neg. at high N_{ch} ($v_2\{4\}$ becomes real).

- Pb-Pb $c_2\{4\}$ values more neg. at same N_{ch} after $N_{ch} > 100$
Hints of non-zero $c_2\{6\}$ at $N_{ch} \sim 60$ for p-Pb.

$v_2\{6\}$ consistent with $v_2\{4\}$ at large p-Pb N_{ch}

Pb-Pb clearly higher than p-Pb at same N_{ch}

$$v_2\{6\} = \sqrt[6]{\frac{1}{4} c_2\{6\}}$$
\(v_2\{2\} \) and \(v_2\{4\} \) in p-Pb

- \(v_2\{2\} > v_2\{4\} \) in p-Pb -> Indicative of flow fluctuations? Contributions from non-flow?
- \(R_2 \) approximates \(\sigma_{v_2}/\langle v_2 \rangle \). Fluctuations larger in p-Pb compared to Pb-Pb.
Third harmonic in p-Pb and Pb-Pb collisions

- Large dependence on Δη gap for $c_3\{2\}$. Increases with N_{ch} for large Δη
- $v_3\{2\}$ consistent with Pb-Pb at same N_{ch}
 - $\varepsilon_3(p-Pb)_{RMS} \sim \varepsilon_3(Pb-Pb)_{RMS}$ and driven by fluctuations?
$v_2\{\text{SP}\}$ in minbias pp collisions

- $v_2\{\text{SP}\}$ equivalent to $v_2\{2\}$
- Non-flow dominates measurement
 - No ridge observed
- Ordering
 - $v_2(\pi) > v_2(p)$
 - $v_2(p) \sim v_2(K)$
 - No cross over for $v_2(\pi)$ & $v_2(p)$

$v_2\{\text{SP}\}$ and $v_2\{\text{2PC}\}$ in p-Pb

- Both $v_2\{\text{SP}\}$ and $v_2\{\text{2PC}\}$ equivalent for current p_T selections
- “Centrality” characterized via multiplicity in V0 (Pb side)
- Mass ordering at high multiplicity:
 - Different to pp
 - $v_2(p) < v_2(K)$
 - $v_2(\pi) \approx v_2(K)$
 - Hint of cross over in high mult. classes

$2\text{PC} = \text{di-hadron correlations}$
$v_2\{2PC, \text{ sub}\}$ in p-Pb

- $v_2\{2PC, \text{ sub}\}$: Obtained via central yields – peripheral associated yields
 - Aims to subtract non-flow
 - Mass dependence more pronounced.
 - Cross over of $v_2(\pi)$ & $v_2(p)$

- Qualitatively more similar to Pb-Pb.

See ALICE talks by Alex Dobrin and Leonardo Milano for more details.
Summary

- Experimental observations **highly suggestive of collective effects in high mult. p-Pb collisions**

- Integrated $h^\pm v_n$ measurements
 - $c_2\{2\}$ rises in p-Pb with N_{ch} for large $|\Delta \eta|$. Naively inconsistent with non-flow.
 - $c_2\{4\}$ in p-Pb transitions from pos. to neg. values. $v_2\{4\}$ becomes real.
 - $c_2\{m\}$ higher in Pb-Pb compared to p-Pb at same N_{ch}.
 - $v_3\{2\}$ in p-Pb and Pb-Pb similar at same N_{ch}.

- Differential PID v_2 measurements
 - Different mass ordering in minbias pp and high mult. p-Pb.
 - Mass ordering in high mult. p-Pb more pronounced after non-flow subtraction.
 - Qualitative similar features to Pb-Pb collisions.
Back-up