Reviewing hadron production in the SIS energy regime using new HADES Au+Au data

Manuel Lorenz for the HADES collaboration

QM, Darmstadt 2014

0. strangeness production at sis 18 energies

- 1. hades and au+au data taking
- 2. preliminaries
- 3. hadron ratios vs. statistical model fit

Heavy-ion collisions and QCD phase diagram

SIS 18 energy regime:

beam energies of 1-2 AGeV for ions, baryon dominated rather long living system

Heavy-ion collisions and QCD phase diagram

SIS 18 energy regime:

beam energies of 1-2 AGeV for ions, baryon dominated rather long living system

Heavy-ion collisions and QCD phase diagram

SIS 18 energy regime:

beam energies of 1-2 AGeV for ions, baryon dominated rather long living system

Strangeness production

Elementary collisions

$$NN \rightarrow NK^{+}\Lambda$$
 $(E_{thr} = 1.58 \, GeV)$

$$NN \rightarrow NNK^+K^- \quad (E_{thr} = 2.49 \, GeV)$$

$$NN \rightarrow NN\varphi$$
 $(E_{thr} = 2.59 \, GeV)$

Meson and baryon production but quantum number conserved on the quark level!

Heavy-ion collisions

- Accumulation of energy in multi-step processes
- Strangeness exchange reactions + potentials

Strangeness production

Different inverse slope parameters

Transport:

- Production of K⁺/K⁻ coupled
- Strangeness exchange dominant for K⁻
- Later freeze-out of K⁻ compared to K⁺, due to coupling to baryons

Strangeness production

Enhanced Φ production at low beam energy

Feed-down of Φ can explain different slope parameters of K⁺ and K⁻

Not taken into account so far.

Can we understand the yields, with fewer assumptions? (Ockham's razor)

Hadrons in Ar+KCl@1.76A GeV

Particle production from a homogeneous source:

$$\rho_{i,q} \propto \int_0^\infty p^2 dp \, exp\left(\frac{-E_i + \vec{\mu}\vec{q_i}}{kT}\right)$$

- Grand canonical ensemble (T, $\mu = \mu_B \mu_s \mu_Q$, V and sometimes γ_s , usually μ_s and μ_Q are constrained)

- Strangeness canonical ensemble (T, $\mu = \mu_B \mu_Q$, V_c, V) (Strangeness canonically suppressed at low temperatures)

- Fits at low beam energies based on limited number of particle species

How will it work for more particle species in Ar+KCI?

Hadrons in Ar+KCl@1.76A GeV

Statistical model works reasonably well at low energies for medium-sized system

THERMUS: S. Wheaton, J.Cleymans: Comput.Phys.Commun.180:84-106,2009

Au+Au @ 1.23 A GeV: Lower energy and heavier system

Complete strangeness production below NN-threshold (production and propagation)

$$\begin{split} NN &\rightarrow NK^{+}\Lambda \qquad (E_{thr} = 1.58\,GeV) \\ NN &\rightarrow NNK^{+}K^{-} \quad (E_{thr} = 2.49\,GeV) \\ NN &\rightarrow NN\varphi \qquad (E_{thr} = 2.59\,GeV) \end{split}$$

HADES

Upgrades for Au+Au

Time-of-flight wall (RPC)

Forward wall

Performance: data taking and analysis

557 hours beam Au on Au target in April 2012

 $(1.2 - 1.5) \times 10^{6}$ ions per second

8 kHz trigger rate

200 Mbyte/s data rate

7.3 x 10⁹ events

140 x 10¹² Bytes of data

beam on target [days]

Performance: mass spectrum

Performance: mass spectrum

Performance: Secondary vertices

Transverse mass spectra

Rapidity distributions

Charged kaons: comparison to other experiments

[#] ratio at mid-rapidity

Φ and K⁻

 Φ meson reconstructed via charged kaons

Φ and K⁻

Strong rise of Φ/K^{-} ratio with decreasing beam energy as predicted by stat. model

ratio at mid-rapidity

Statistical model fit: first attempt

First attempt of statistical model fit to ratios gives reasonable values:

T= 47±5 MeV

μ_B= 799±34 MeV

 $R_{c}/R_{v} = 0.3 \pm 0.2$

(no systematical errors!!)

THERMUS: S. Wheaton, J.Cleymans: Comput. Phys. Commun. 180:84-106, 2009

Statistical model fit: first attempt

First attempt of statistical model fit to ratios gives reasonable values:

T= 47±5 MeV

μ_B= 799±34 MeV

 $R_{c}/R_{v} = 0.3 \pm 0.2$

(no systematical errors!!)

THERMUS: S. Wheaton, J.Cleymans: Comput. Phys. Commun. 180:84-106, 2009

Summary

- Successful Au+Au data taking with upgraded HADES
 - Definitely a challenge
 - Mass spectra and reconstructed particles
- First physics results
 - K_{s}^{0} and Λ rapidity distributions, K⁻/K⁺, Φ/K^{-}
 - First preliminary ratios consistent with statistical model
 - Conflict between slopes of spectra and T extracted from statistical model

- Very long shopping list:
 - Fluctuations (up to 6th order harmonic)
 - Flow analysis (v1,v2,v3,v4)

The HADES collaboration

Thank you for your attention!

Back up

Hadronic models

Chiral condensates can only be related to the integral over hadronic spectral functions by QCD sum rules: \rightarrow spectral function constrained but not determined

Hadronic models needed to predict hadron properties inside the medium

Additional contributions to particle self energy by coupling to resonances inside the medium:

N-1

Example: **p meson**

Probe: dilepton decay

Observable: Lineshape modifications

Probe: direct reconstruction of hadron

Observable: Production yields (steep excitation functions) and phase space distributions

Centrality selection

Nch

Impact parameter

	 (fm)	<n<sub>part.></n<sub>
min. bias	5.83	19.25
LVL1	3.54	38.5

Pions

Hadrons in Ar+KCl@1.76A GeV

Probability P_{ss} to produce a strange quark pair $\approx 0.05 \rightarrow P_{\Xi} \approx 0.1 P_{ss}^2$

Strangeness production not independent?

Ar+KCI: vector mesons

ω-meson:

subthreshold + electromagnetic decay channel: **50 million events for one ω!**

Φ/ω ratio:

suppressed in elementary reactions due to OZI rule

>> $R_{\phi/\omega}$ in NN and πN reactions ! Impact of other channels besides NN and πN ? (e.g. ρN , $\rho \Delta$, ...) Effect of the medium?